Constant curvature f(R) gravity minimally coupled with Yang–Mills field

  • S. Habib Mazharimousavi
  • M. Halilsoy
  • T. Tahamtan
Regular Article - Theoretical Physics

Abstract

We consider the particular class of f(R) gravities minimally coupled with Yang–Mills (YM) field in which the Ricci scalar =R 0=constant in all dimensions d≥4. Even in this restricted class the spacetime has unlimited scopes determined by an equation of state of the form P eff=ωρ. Depending on the distance from the origin (or horizon of a black hole) the state function ω(r) takes different values. It is observed that \(\omega\rightarrow\frac{1}{3}\) (the ultra relativistic case in 4 dimensions) and ω→−1 (the cosmological constant) are the limiting values of our state function ω(r) in a spacetime centered by a black hole. This suggests that having a constant ω throughout spacetime around a charged black hole in f(R) gravity with constant scalar curvature is a myth.

Keywords

Black Hole Black Hole Solution Effective Pressure Charged Black Hole Constant Scalar Curvature 

References

  1. 1.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S.H. Hendi, Phys. Lett. B 690, 220 (2010) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Rev. D 84, 064032 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    P.B. Yasskin, Phys. Rev. D 12, 2212 (1975) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    K. Bamba, S.D. Odintsov, J. Cosmol. Astropart. Phys. 04, 024 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 123532 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    T. Moon, Y.S. Myung, E.J. Son, Gen. Relativ. Gravit. 43, 3079 (2011) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    S.H. Mazharimousavi, M. Halilsoy, T. Tahamtan, Eur. Phys. J. C 72, 1851 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, Phys. Rev. D 80, 124011 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, Phys. Rev. D 83, 029903(E) (2011) ADSGoogle Scholar
  12. 12.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 657, 238 (2007) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    G.J. Olmo, D.R. Garcia, Phys. Rev. D 84, 124059 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Mazharimousavi, M. Halilsoy, Z. Amirabi, Gen. Relativ. Gravit. 42, 261 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Lett. B 659, 471 (2008) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Lett. B 694, 54 (2010) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    M. Hassaine, C. Martinez, Class. Quantum Gravity 25, 195023 (2008) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    H. Maeda, M. Hassaine, C. Martinez, Phys. Rev. D 79, 044012 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Hendi, H.R. Rastegar-Sedehi, Gen. Relativ. Gravit. 41, 1355 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    S.H. Hendi, Phys. Lett. B 677, 123 (2009) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    M. Hassaine, C. Martínez, Phys. Rev. D 75, 027502 (2007) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    V. Faraoni, Phys. Rev. D 83, 124044 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    A.D. Dolgov, M. Kawasaki, Phys. Lett. B 573, 1 (2003) ADSMATHCrossRefGoogle Scholar
  24. 24.
    M. Akbar, R.G. Cai, Phys. Lett. B 635, 7 (2006) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Y. Gong, A. Wang, Phys. Rev. Lett. 99, 211301 (2007) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    R. Brustein, D. Gorbonos, M. Hadad, Phys. Rev. D 79, 044025 (2009) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, J. Cosmol. Astropart. Phys. 0502, 010 (2005) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    I. Brevik, S. Nojiri, S.D. Odintsov, L. Vanzo, Phys. Rev. D 70, 043520 (2004) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    C.W. Misner, D.H. Sharp, Phys. Rev. B 136, 571 (1964) MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    M. Akbar, R.G. Cai, Phys. Lett. B 648, 243 (2007) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    R.G. Cai, L.M. Cao, Y.P. Hu, N. Ohta, Phys. Rev. D 80, 104016 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    H. Maeda, M. Nozawa, Phys. Rev. D 77, 064031 (2008) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    M. Akbar, R.G. Cai, Phys. Rev. D 75, 084003 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    M. Akbar, R.G. Cai, Phys. Lett. B 635, 7 (2006) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    R.G. Cai, L.M. Cao, N. Ohta, Phys. Rev. D 81, 084012 (2010) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973) MATHCrossRefGoogle Scholar
  37. 37.
    M. Salgado, Class. Quantum Gravity 20, 4551 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    S.H. Mazharimousavi, O. Gurtug, M. Halilsoy, Int. J. Mod. Phys. D 18, 2061 (2009) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • S. Habib Mazharimousavi
    • 1
  • M. Halilsoy
    • 1
  • T. Tahamtan
    • 1
  1. 1.Department of PhysicsEastern Mediterranean UniversityMersin 10Turkey

Personalised recommendations