Advertisement

FastJet user manual

(for version 3.0.2)
  • Matteo Cacciari
  • Gavin P. Salam
  • Gregory Soyez
Open Access
Special Article - Tools for Experiment and Theory

Abstract

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e + e collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

Keywords

Ghost Large Hadron Collider Member Function Cone Algorithm Passive Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Sterman, S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977) ADSCrossRefGoogle Scholar
  2. 2.
    S. Moretti, L. Lonnblad, T. Sjostrand, New and old jet clustering algorithms for electron positron events. J. High Energy Phys. 9808, 001 (1998). arXiv:hep-ph/9804296 ADSCrossRefGoogle Scholar
  3. 3.
    G.C. Blazey et al., hep-ex/0005012
  4. 4.
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Tonnesmann, Prog. Part. Nucl. Phys. 60, 484 (2008). arXiv:0712.2447 [hep-ph] ADSCrossRefGoogle Scholar
  5. 5.
    G.P. Salam, Eur. Phys. J. C 67, 637–686 (2010). arXiv:0906.1833 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    A. Ali, G. Kramer, Eur. Biophys. J. 36, 245–326 (2011). arXiv:1012.2288 [hep-ph] Google Scholar
  7. 7.
  8. 8.
    S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). hep-ph/9305266 ADSCrossRefGoogle Scholar
  10. 10.
    M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). hep-ph/0512210 ADSCrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    J.M. Butterworth, J.P. Couchman, B.E. Cox, B.M. Waugh, Comput. Phys. Commun. 153, 85 (2003). hep-ph/0210022 ADSCrossRefGoogle Scholar
  14. 14.
    A. Fabri et al., Softw. Pract. Exp. 30, 1167 (2000) MATHCrossRefGoogle Scholar
  15. 15.
    J.-D. Boissonnat et al., Comput. Geom. 22, 5 (2001); http://www.cgal.org/ MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    A. Abdesselam, E.B. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, P. Bruckman de Renstrom, D. Buarque Franzosi, R. Buckingham et al., Eur. Phys. J. C 71, 1661 (2011). arXiv:1012.5412 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    P.A. Delsart, K. Geerlings, J. Huston, B. Martin, C. Vermilion, SpartyJet, http://projects.hepforge.org/spartyjet
  19. 19.
    M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 005 (2008). arXiv:0802.1188 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    M. Cacciari, G.P. Salam, Phys. Lett. B 659, 119 (2008). arXiv:0707.1378 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Eur. Phys. J. C 71, 1539 (2011). arXiv:1010.1759 [hep-ph] ADSGoogle Scholar
  22. 22.
    C. Buttar et al., arXiv:0803.0678 [hep-ph]
  23. 23.
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 80, 051501 (2009). arXiv:0903.5081 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). hep-ph/9707323 ADSCrossRefGoogle Scholar
  25. 25.
    M. Wobisch, T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic. arXiv:hep-ph/9907280
  26. 26.
    M. Wobisch, Measurement and QCD analysis of jet cross sections in deep-inelastic, DESY-THESIS-2000-049 Google Scholar
  27. 27.
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269, 432 (1991) ADSCrossRefGoogle Scholar
  28. 28.
    L. Lonnblad, Z. Phys. C 58, 471–478 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    G.P. Salam, G. Soyez, J. High Energy Phys. 0705, 086 (2007). arXiv:0704.0292 [hep-ph]; standalone code available from http://projects.hepforge.org/siscone ADSCrossRefGoogle Scholar
  30. 30.
    S.D. Ellis, J. Huston, M. Tonnesmann, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics, ed. by N. Graf, Snowmass (2001), p. P513. hep-ph/0111434 Google Scholar
  31. 31.
    TeV4LHC QCD Working Group et al., hep-ph/0610012
  32. 32.
    S. Weinzierl, Comput. Phys. Commun. 183, 813 (2012), arXiv:1108.1934 [hep-ph] ADSCrossRefGoogle Scholar
  33. 33.
  34. 34.
    F. Abe et al. (CDF Collaboration), Phys. Rev. D 45, 1448 (1992) ADSCrossRefGoogle Scholar
  35. 35.
    B. Abbott et al. (D0 Collaboration), FERMILAB-PUB-97-242-E Google Scholar
  36. 36.
    V.M. Abazov et al. (D0 Collaboration), arXiv:1110.3771 [hep-ex]
  37. 37.
    M.H. Seymour, C. Tevlin, J. High Energy Phys. 0611, 052 (2006). arXiv:hep-ph/0609100 ADSCrossRefGoogle Scholar
  38. 38.
    L.A. del Pozo, M.H. Seymour, unpublished Google Scholar
  39. 39.
    T. Affolder et al. (CDF Collaboration), Phys. Rev. D 65, 092002 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    W. Bartel et al. (JADE Collaboration), Z. Phys. C 33, 23 (1986) ADSCrossRefGoogle Scholar
  41. 41.
    S. Bethke et al. (JADE Collaboration), Phys. Lett. B 213, 235 (1988) ADSCrossRefGoogle Scholar
  42. 42.
    G.P. Salam, G. Soyez, April 2009, unpublished Google Scholar
  43. 43.
    S. Fortune, Algorithmica 2, 1 (1987) MathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Cacciari, G.P. Salam, S. Sapeta, J. High Energy Phys. 1004, 065 (2010). arXiv:0912.4926 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    M. Cacciari, G.P. Salam, G. Soyez, Contribution in preparation to proceedings of “Workshop on TeV Colliders”, Les Houches, June 2011 Google Scholar
  46. 46.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 [hep-ph] ADSCrossRefGoogle Scholar
  47. 47.
    D. Krohn, J. Thaler, L.T. Wang, J. High Energy Phys. 1002, 084 (2010). arXiv:0912.1342 [hep-ph] ADSCrossRefGoogle Scholar
  48. 48.
    D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Phys. Rev. Lett. 101, 142001 (2008). arXiv:0806.0848 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    J.M. Butterworth, J.R. Ellis, A.R. Raklev, G.P. Salam, Phys. Rev. Lett. 103, 241803 (2009). arXiv:0906.0728 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    J.H. Kim, Phys. Rev. D 83, 011502 (2011). arXiv:1011.1493 [hep-ph] ADSCrossRefGoogle Scholar
  51. 51.
    T.M. Chan, in Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2002), p. 472 Google Scholar
  52. 52.
    M.R. Anderberg, Cluster Analysis for Applications. Probability and Mathematical Statistics vol. 19 (Academic Press, New York, 1973) MATHGoogle Scholar
  53. 53.
    L. Sonnenschein, Ph.D. Thesis, RWTH Aachen 2001; http://cmsdoc.cern.ch/documents/01/doc2001_025.ps.Z
  54. 54.
    T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175 ADSCrossRefGoogle Scholar
  55. 55.
    T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820 [hep-ph] ADSCrossRefGoogle Scholar
  56. 56.
    D. Eppstein, ACM J. Exp. Algorithmics 5, 1–23 (2000). arXiv:cs.DS/9912014 MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Matteo Cacciari
    • 1
    • 2
  • Gavin P. Salam
    • 1
    • 3
    • 4
  • Gregory Soyez
    • 5
  1. 1.LPTHEUPMC Univ. Paris 6 and CNRS UMR 7589ParisFrance
  2. 2.Université Paris DiderotParisFrance
  3. 3.Physics Department, Theory UnitCERNGenevaSwitzerland
  4. 4.Department of PhysicsPrinceton UniversityPrincetonUSA
  5. 5.Institut de Physique ThéoriqueCEA SaclayGif-sur-YvetteFrance

Personalised recommendations