Advertisement

Perturbative and non-perturbative Kolmogorov turbulence in a gluon plasma

Regular Article - Theoretical Physics

Abstract

In numerical simulations of nonabelian plasma instabilities in the hard-loop approximation, a turbulent spectrum has been observed that is characterized by a phase-space density of particles n(p)∼p ν with exponent ν≃2, which is larger than expected from relativistic 2↔2 scatterings. Using the approach of Zakharov, L’vov and Falkovich, we analyze possible Kolmogorov coefficients for relativistic (m≥4)-particle processes, which give at most ν=5/3 perturbatively for an energy cascade. We discuss non-perturbative scenarios which lead to larger values. As an extreme limit we find the result ν=5 generically in an inherently non-perturbative effective field theory situation, which coincides with results obtained by Berges et al. in large-N scalar field theory. If we instead assume that scaling behavior is determined by Schwinger–Dyson resummations such that the different scaling of bare and dressed vertices matters, we find that intermediate values are possible. We present one simple scenario, which would single out ν=2.

Keywords

High Energy Phys Vertex Function Loop Order Energy Cascade Scaling Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Zakharov, V. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence (Springer, Berlin, 1992) MATHGoogle Scholar
  2. 2.
    R. Micha, I. Tkachev, Phys. Rev. D 70, 043538 (2003) CrossRefADSGoogle Scholar
  3. 3.
    J. Berges, A. Rothkopf, J. Schmidt, Phys. Rev. Lett. 101, 041603 (2008) CrossRefADSGoogle Scholar
  4. 4.
    J. Berges, G. Hoffmeister, Nucl. Phys. B 813, 383 (2009) CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    J. Berges, D. Sexty, Phys. Rev. D 83, 085004 (2011) CrossRefADSGoogle Scholar
  6. 6.
    A.H. Mueller, A.I. Shoshi, S.M.H. Wong, Nucl. Phys. B 760, 145 (2007) CrossRefMATHADSGoogle Scholar
  7. 7.
    P. Arnold, G.D. Moore, Phys. Rev. D 73, 025006 (2006) CrossRefADSGoogle Scholar
  8. 8.
    P. Arnold, G.D. Moore, Phys. Rev. D 73, 025013 (2006) CrossRefADSGoogle Scholar
  9. 9.
    J. Berges, S. Scheffler, D. Sexty, Phys. Lett. B 681, 362 (2009). arXiv:0811.4293 [hep-ph] CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B 502, 51 (2001) CrossRefADSGoogle Scholar
  11. 11.
    S. Mrówczyński, Phys. Lett. B 214, 587 (1988) CrossRefADSGoogle Scholar
  12. 12.
    S. Mrówczyński, Phys. Lett. B 314, 118 (1993) CrossRefADSGoogle Scholar
  13. 13.
    S. Mrówczyński, Phys. Lett. B 393, 26 (1997) CrossRefADSGoogle Scholar
  14. 14.
    P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003) CrossRefADSGoogle Scholar
  15. 15.
    P. Romatschke, M. Strickland, Phys. Rev. D 70, 116006 (2004) CrossRefADSGoogle Scholar
  16. 16.
    P. Arnold, J. Lenaghan, G.D. Moore, J. High Energy Phys. 08, 002 (2003) CrossRefADSGoogle Scholar
  17. 17.
    A. Rebhan, D. Steineder, Phys. Rev. D 81, 085044 (2010) CrossRefADSGoogle Scholar
  18. 18.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, Phys. Rev. D 72, 054003 (2005) CrossRefADSGoogle Scholar
  19. 19.
    A. Rebhan, P. Romatschke, M. Strickland, J. High Energy Phys. 0509, 041 (2005) CrossRefADSGoogle Scholar
  20. 20.
    D. Bödeker, K. Rummukainen, J. High Energy Phys. 0707, 022 (2007) CrossRefGoogle Scholar
  21. 21.
    A. Ipp, A. Rebhan, M. Strickland, Phys. Rev. D 84, 056003 (2011) CrossRefADSGoogle Scholar
  22. 22.
    P. Aurenche, F. Gelis, R. Kobes, H. Zaraket, Phys. Rev. D 58, 085003 (1998) CrossRefADSGoogle Scholar
  23. 23.
    P. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 0112, 009 (2001) CrossRefADSGoogle Scholar
  24. 24.
    P. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 0305, 051 (2003) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    M.E. Carrington, S. Mrówczyński, Phys. Rev. D 71, 065007 (2005) CrossRefADSGoogle Scholar
  26. 26.
    M.E. Carrington, T. Fugleberg, D.S. Irvine, D. Pickering, Eur. Phys. J. C 50, 711 (2007) CrossRefMATHADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Department of PhysicsBrandon UniversityBrandonCanada
  2. 2.Winnipeg Institute for Theoretical PhysicsWinnipegCanada
  3. 3.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations