The European Physical Journal C

, 71:1757 | Cite as

All-loop calculation of the Reggeon field theory amplitudes via stochastic model

  • R. S. Kolevatov
  • K. G. Boreskov
  • L. V. Bravina
Regular Article - Theoretical Physics

Abstract

The evolution equations for Green functions of the Reggeon Field Theory (RFT) are equivalent to those of the inclusive distributions for the reaction–diffusion system of classical particles. We use this equivalence to obtain numerically Green functions and amplitudes of the RFT with all loop contributions included. The numerical realization of the approach is described and some important applications including total and elastic proton–proton cross sections are studied. It is shown that the loop diagram contribution is essential but can be imitated in the eikonal cross section description by changing the Pomeron intercept. A role of the quartic Pomeron coupling which is an inherent part of the stochastic model is shown to be negligible for available energies.

Keywords

Quartic Coupling Inclusive Distribution Linkage Point Full Propagator Diffractive Cross Section 

References

  1. 1.
    V.N. Gribov, Sov. Phys. JETP 26, 414 (1968) [Zh. Èksp. Teor. Fiz. 53, 654 (1967)] ADSGoogle Scholar
  2. 2.
    P. Grassberger, K. Sundermeyer, Phys. Lett. B 77, 220 (1978) ADSGoogle Scholar
  3. 3.
    K.G. Boreskov, in Multiple facets of quantization and supersymmetry, ed. by M. Olshanetsky et al. (2001), pp. 322–351. hep-ph/0112325 Google Scholar
  4. 4.
    S. Bondarenko, L. Motyka, A.H. Mueller, A.I. Shoshi, B.-W. Xiao, Eur. Phys. J. C 50, 593 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    G.P. Salam, Nucl. Phys. B 461, 512 (1996). hep-ph/9509353 ADSCrossRefGoogle Scholar
  6. 6.
    E. Avsar, G. Gustafson, L. Lonnblad, J. High Energy Phys. 0701, 012 (2007). hep-ph/0610157 ADSGoogle Scholar
  7. 7.
    H. Minc, Permanents (Addison-Wesley, Reading, 1978) MATHGoogle Scholar
  8. 8.
    D. Amati, L. Caneschi, R. Jengo, Nucl. Phys. B 101, 397 (1975) ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Braun, G.P. Vacca, Eur. Phys. J. C 50, 857 (2007). hep-ph/0612162 ADSCrossRefGoogle Scholar
  10. 10.
    H.D.I. Abarbanel, J.B. Bronzan, R.L. Sugar, A.R. White, Phys. Rep. 21, 119 (1975) ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Ter-Martirosyan, Sov. J. Nucl. Phys. 44, 817 (1986) [Yad. Fiz. 44, 1257 (1986)] Google Scholar
  12. 12.
    A.B. Kaidalov, Phys. Rep. 50, 157 (1979) ADSCrossRefGoogle Scholar
  13. 13.
    K.A. Goulianos, Phys. Lett. B 358, 379 (1995). hep-ph/9502356 ADSGoogle Scholar
  14. 14.
    K.A. Goulianos, J. Montanha, Phys. Rev. D 59, 114017 (1999). hep-ph/9805496 ADSGoogle Scholar
  15. 15.
    E.G.S. Luna, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 59, 1 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    A.B. Kaidalov, M.G. Poghosyan, 0909.5156 [hep-ph]
  17. 17.
    S. Ostapchenko, Phys. Rev. D 81, 114028 (2010). 1003.0196 [hep-ph] ADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  • R. S. Kolevatov
    • 1
    • 3
  • K. G. Boreskov
    • 2
  • L. V. Bravina
    • 1
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Department of High Energy PhysicsSaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations