Renormalization group running of lepton mixing parameters in see-saw models with S 4 flavor symmetry

Regular Article - Theoretical Physics
  • 69 Downloads

Abstract

We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S 4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle θ 12 depends on \(\tan\beta\) and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on θ 12 in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large \(\tan\beta\). The evolution of light-neutrino masses is approximately described by a common scaling factor.

Keywords

Neutrino Mass High Energy Phys Vacuum Expectation Value Neutrino Mass Matrix Normal Hierarchy 

References

  1. 1.
    A. Strumia, F. Vissani, arXiv:hep-ph/0606054
  2. 2.
    M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008). arXiv:0704.1800 [hep-ph] ADSCrossRefGoogle Scholar
  3. 3.
    T. Schwetz, M. Tortola, J.W.F. Valle, arXiv:1103.0734 [hep-ph]
  4. 4.
    T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 10, 113011 (2008). arXiv:0808.2016 [hep-ph] ADSCrossRefGoogle Scholar
  5. 5.
    M. Maltoni, T. Schwetz, arXiv:0812.3161 [hep-ph]
  6. 6.
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, arXiv:0809.2936 [hep-ph]
  7. 7.
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, Phys. Rev. Lett. 101, 141801 (2008). arXiv:0806.2649 [hep-ph] ADSCrossRefGoogle Scholar
  8. 8.
    P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002). hep-ph/0202074 ADSCrossRefGoogle Scholar
  9. 9.
    P.F. Harrison, W.G. Scott, Phys. Lett. B 535, 163 (2002). hep-ph/0203209 ADSCrossRefGoogle Scholar
  10. 10.
    Z.Z. Xing, Phys. Lett. B 533, 85 (2002). hep-ph/0204049 ADSCrossRefGoogle Scholar
  11. 11.
    X.G. He, A. Zee, Phys. Lett. B 560, 87 (2003). hep-ph/0301092 ADSCrossRefGoogle Scholar
  12. 12.
    G. Altarelli, F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010). arXiv:1002.0211 [hep-ph] ADSCrossRefGoogle Scholar
  13. 13.
    H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu, M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010). arXiv:1003.3552 [hep-th] ADSMATHCrossRefGoogle Scholar
  14. 14.
    K.R.S. Balaji, A.S. Dighe, R.N. Mohapatra, M.K. Parida, Phys. Lett. B 481, 33 (2000). arXiv:hep-ph/0002177 ADSCrossRefGoogle Scholar
  15. 15.
    S. Antusch, M. Ratz, J. High Energy Phys. 0211, 010 (2002). arXiv:hep-ph/0208136 ADSCrossRefGoogle Scholar
  16. 16.
    R.N. Mohapatra, M.K. Parida, G. Rajasekaran, Phys. Rev. D 69, 053007 (2004). arXiv:hep-ph/0301234 ADSCrossRefGoogle Scholar
  17. 17.
    S. Antusch, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 544, 1 (2002). arXiv:hep-ph/0206078 ADSCrossRefGoogle Scholar
  18. 18.
    T. Miura, T. Shindou, E. Takasugi, Phys. Rev. D 68, 093009 (2003). arXiv:hep-ph/0308109 ADSCrossRefGoogle Scholar
  19. 19.
    F. Bazzocchi, L. Merlo, S. Morisi, Nucl. Phys. B 816, 204 (2009). arXiv:0901.2086 [hep-ph] ADSMATHCrossRefGoogle Scholar
  20. 20.
    F. Bazzocchi, L. Merlo, S. Morisi, Phys. Rev. D 80, 053003 (2009). arXiv:0902.2849 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    G.J. Ding, Nucl. Phys. B 827, 82 (2010). arXiv:0909.2210 [hep-ph] ADSMATHCrossRefGoogle Scholar
  22. 22.
    C.S. Lam, Phys. Rev. Lett. 101, 121602 (2008). arXiv:0804.2622 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    C.S. Lam, Phys. Rev. D 78, 073015 (2008). arXiv:0809.1185 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    C.S. Lam, arXiv:0907.2206 [hep-ph]
  25. 25.
    E. Ma, Phys. Lett. B 632, 352 (2006). arXiv:hep-ph/0508231 ADSCrossRefGoogle Scholar
  26. 26.
    D. Meloni, J. Phys. G 37, 055201 (2010). arXiv:0911.3591 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    G. Altarelli, F. Feruglio, L. Merlo, J. High Energy Phys. 0905, 020 (2009). arXiv:0903.1940 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    W. Grimus, L. Lavoura, P.O. Ludl, J. Phys. G 36, 115007 (2009). arXiv:0906.2689 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    B. Dutta, Y. Mimura, R.N. Mohapatra, J. High Energy Phys. 1005, 034 (2010). arXiv:0911.2242 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    C. Hagedorn, S.F. King, C. Luhn, J. High Energy Phys. 1006, 048 (2010). arXiv:1003.4249 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    H. Ishimori, Y. Shimizu, M. Tanimoto, Prog. Theor. Phys. 121, 769 (2009). arXiv:0812.5031 [hep-ph] ADSMATHCrossRefGoogle Scholar
  32. 32.
    H. Ishimori, K. Saga, Y. Shimizu, M. Tanimoto, arXiv:1004.5004 [hep-ph]
  33. 33.
    R. de Adelhart Toorop, F. Bazzocchi, L. Merlo, J. High Energy Phys. 1008, 001 (2010). arXiv:1003.4502 [hep-ph] CrossRefGoogle Scholar
  34. 34.
    G.J. Ding, Nucl. Phys. B 846, 394 (2011). arXiv:1006.4800 [hep-ph] ADSMATHCrossRefGoogle Scholar
  35. 35.
    S. Pakvasa, H. Sugawara, Phys. Lett. B 82, 105 (1979) ADSCrossRefGoogle Scholar
  36. 36.
    T. Brown, N. Deshpande, S. Pakvasa, H. Sugawara, Phys. Lett. B 141, 95 (1984) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Yamanaka, H. Sugawara, S. Pakvasa, Phys. Rev. D 25, 1895 (1982). Erratum-ibid. D 29, 2135 (1984) ADSCrossRefGoogle Scholar
  38. 38.
    T. Brown, S. Pakvasa, H. Sugawara, Y. Yamanaka, Phys. Rev. D 30, 255 (1984) ADSCrossRefGoogle Scholar
  39. 39.
    D.G. Lee, R.N. Mohapatra, Phys. Lett. B 329, 463 (1994). arXiv:hep-ph/9403201 ADSCrossRefGoogle Scholar
  40. 40.
    C. Hagedorn, M. Lindner, R.N. Mohapatra, J. High Energy Phys. 0606, 042 (2006). arXiv:hep-ph/0602244 ADSCrossRefGoogle Scholar
  41. 41.
    Y. Cai, H.B. Yu, Phys. Rev. D 74, 115005 (2006). arXiv:hep-ph/0608022 ADSCrossRefGoogle Scholar
  42. 42.
    H. Zhang, Phys. Lett. B 655, 132 (2007). arXiv:hep-ph/0612214 ADSCrossRefGoogle Scholar
  43. 43.
    Y. Koide, J. High Energy Phys. 0708, 086 (2007). arXiv:0705.2275 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    M.K. Parida, Phys. Rev. D 78, 053004 (2008). arXiv:0804.4571 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    P.H. Chankowski, Z. Pluciennik, Phys. Lett. B 316, 312 (1993). arXiv:hep-ph/9306333 ADSCrossRefGoogle Scholar
  46. 46.
    K.S. Babu, C.N. Leung, J.T. Pantaleone, Phys. Lett. B 319, 191 (1993). arXiv:hep-ph/9309223 ADSCrossRefGoogle Scholar
  47. 47.
    J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, Nucl. Phys. B 569, 82 (2000). arXiv:hep-ph/9905381 ADSCrossRefGoogle Scholar
  48. 48.
    J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, Nucl. Phys. B 573, 652 (2000). arXiv:hep-ph/9910420 ADSCrossRefGoogle Scholar
  49. 49.
    S. Antusch, M. Drees, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 519, 238 (2001). arXiv:hep-ph/0108005 ADSCrossRefGoogle Scholar
  50. 50.
    S. Antusch, J. Kersten, M. Lindner, M. Ratz, Phys. Lett. B 538, 87 (2002). arXiv:hep-ph/0203233 ADSCrossRefGoogle Scholar
  51. 51.
    M. Lindner, M.A. Schmidt, A.Y. Smirnov, J. High Energy Phys. 0507, 048 (2005). arXiv:hep-ph/0505067 ADSCrossRefGoogle Scholar
  52. 52.
    S.F. King, N.N. Singh, Nucl. Phys. B 591, 3 (2000). arXiv:hep-ph/0006229 ADSCrossRefGoogle Scholar
  53. 53.
    J.w. Mei, Phys. Rev. D 71, 073012 (2005). arXiv:hep-ph/0502015 ADSCrossRefGoogle Scholar
  54. 54.
    J.R. Ellis, A. Hektor, M. Kadastik, K. Kannike, M. Raidal, Phys. Lett. B 631, 32 (2005). arXiv:hep-ph/0506122 ADSCrossRefGoogle Scholar
  55. 55.
    W. Chao, H. Zhang, Phys. Rev. D 75, 033003 (2007). arXiv:hep-ph/0611323 ADSCrossRefGoogle Scholar
  56. 56.
    M.A. Schmidt, Phys. Rev. D 76, 073010 (2007). arXiv:0705.3841 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    J. Chakrabortty, A. Dighe, S. Goswami, S. Ray, Nucl. Phys. B 820, 116 (2009). arXiv:0812.2776 [hep-ph] ADSMATHCrossRefGoogle Scholar
  58. 58.
    S. Antusch, J. Kersten, M. Lindner, M. Ratz, Nucl. Phys. B 674, 401 (2003). arXiv:hep-ph/0305273 ADSCrossRefGoogle Scholar
  59. 59.
    S. Antusch, J. Kersten, M. Lindner, M. Ratz, M.A. Schmidt, J. High Energy Phys. 0503, 024 (2005). arXiv:hep-ph/0501272 ADSCrossRefGoogle Scholar
  60. 60.
    Z.z. Xing, H. Zhang, S. Zhou, Phys. Rev. D 77, 113016 (2008). arXiv:0712.1419 [hep-ph] ADSCrossRefGoogle Scholar
  61. 61.
    J. Bergstrom, M. Malinsky, T. Ohlsson, H. Zhang, Phys. Rev. D 81, 116006 (2010). arXiv:1004.4628 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    M. Blennow, H. Melbeus, T. Ohlsson, H. Zhang, arXiv:1101.2585 [hep-ph]
  63. 63.
    J. Barry, W. Rodejohann, Nucl. Phys. B 842, 33 (2011). arXiv:1007.5217 [hep-ph] ADSCrossRefGoogle Scholar
  64. 64.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  65. 65.
    S. Antusch, M. Spinrath, Phys. Rev. D 78, 075020 (2008). arXiv:0804.0717 [hep-ph] ADSCrossRefGoogle Scholar
  66. 66.
    S. Boudjemaa, S.F. King, Phys. Rev. D 79, 033001 (2009). arXiv:0808.2782 [hep-ph] ADSCrossRefGoogle Scholar
  67. 67.
    M. Bustamante, A.M. Gago, J. Jones-Perez, arXiv:1012.2728 [hep-ph]
  68. 68.
    A. Osipowicz et al. (KATRIN Collaboration), arXiv:hep-ex/0109033; see also: http://www-ik.fzk.de/katrin/index.html
  69. 69.
    Y. Lin, L. Merlo, A. Paris, Nucl. Phys. B 835, 238 (2010). arXiv:0911.3037 [hep-ph] ADSMATHCrossRefGoogle Scholar
  70. 70.
    P.H. Chankowski, S. Pokorski, Int. J. Mod. Phys. A 17, 575 (2002). arXiv:hep-ph/0110249 ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of PhysicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations