BRST analysis of topologically massive gauge theory: novel observations

Regular Article - Theoretical Physics

Abstract

A dynamical non-Abelian 2-form gauge theory (with BF term) is endowed with the “scalar” and “vector” gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi–Rouet–Stora–Tyutin (BRST) analysis of the four (3+1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the “scalar” and “vector” gauge symmetries.

Keywords

Gauge Theory Ghost Lagrangian Density Symmetry Transformation Ghost Number 

References

  1. 1.
    T.J. Allen, M.J. Bowick, A. Lahiri, Mod. Phys. Lett. A 6, 559 (1991) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    D.Z. Freedman, P.K. Townsend, Nucl. Phys. B 177, 282 (1981) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    A. Lahiri, Phys. Rev. D 55, 5045 (1997) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A. Lahiri, Phys. Rev. D 63, 105002 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    E. Harikumar, A. Lahiri, M. Sivakumar, Phys. Rev. D 63, 105020 (2001) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    R.P. Malik, Eur. Phys. J. C 60, 457 (2009). hep-th/0702039 MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    S. Gupta, R. Kumar, R.P. Malik, Eur. Phys. J. C 70, 491 (2010). arXiv:1003.3390 [hep-th] ADSCrossRefGoogle Scholar
  8. 8.
    L. Bonora, P. Pasti, M. Tonin, Nuovo Cimento A 63, 353 (1981) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981) ADSCrossRefGoogle Scholar
  10. 10.
    S. Krishna, A. Shukla, R.P. Malik, arXiv:1008.2649 [hep-th]
  11. 11.
    R. Kumar, R.P. Malik, Europhys. Lett. 94, 11001 (2011). arXiv:1012.5195 [hep-th] ADSCrossRefGoogle Scholar
  12. 12.
    K. Nishijima, Czech. J. Phys. 46, 1 (1996) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    S. Weinberg, The Quantum Theory of Fields: Modern Applications, vol. 2 (Cambridge University Press, Cambridge, 1996) MATHGoogle Scholar
  14. 14.
    L. Bonora, R.P. Malik, J. Phys. A, Math. Theor. 43, 375403 (2010). arXiv:0911.4919 [hep-th] MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.P. Malik, arXiv:1106.3764 [hep-th]
  16. 16.
    H. Ruegg, M.R. Altaba, Int. J. Mod. Phys. A 19, 3265 (2004). arXiv:hep-th/0304245 ADSMATHCrossRefGoogle Scholar
  17. 17.
    W.E. Burcham, M. Jobes, Nuclear and Particle Physics, vol. 2 (Wiley, New York, 1995) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Physics Department, Centre of Advanced StudiesBanaras Hindu UniversityVaranasiIndia
  2. 2.DST Centre for Interdisciplinary Mathematical Sciences, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations