Advertisement

Resonances in gravitational scenario given by deformed branes

Regular Article - Theoretical Physics

Abstract

In this work we examine a five-dimensional brane-world model with brane structure driven by a real scalar field. From the deformation of a kink-like defect we find a new class of brane solutions containing internal structures which have implications for the way the background space-time is constructed and the way its curvature behaves. Initially, for spin 0 scalar field, we find a zero mode which can be localized on the deformed brane. However, this result can change by the gravitational interaction with the brane internal structure. Analyzing the massive modes of the scalar field, using two different methods, we find resonance structures similar to those found in the study of gravity localization. The main objective here is to observe the contributions of the deformation procedure to the resonances and to the well known field localization methods.

Keywords

Extra Dimension Zero Mode Massive Mode Warp Factor Domain Wall Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    M. Gremm, Phys. Lett. B 478, 434 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch, Phys. Rev. D 62, 046008 (2000) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91, 241601 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    D. Bazeia, L. Losano, Phys. Rev. D 73, 025016 (2006) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    D. Bazeia, C. Furtado, A.R. Gomes, J. Cosmol. Astropart. Phys. 0402, 002 (2004) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    C.A.S. Almeida, M.M. Ferreira Jr., A.R. Gomes, R. Casana, Phys. Rev. D 79, 125022 (2009) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Y.X. Liu, H.T. Li, Z.H. Zhao, J.X. Li, J.R. Ren, J. High Energy Phys. 0910, 091 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Y.X. Liu, J. Yang, Z.H. Zhao, C.E. Fu, Y.S. Duan, Phys. Rev. D 80, 065019 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    A. Campos, Phys. Rev. Lett. 88, 141602 (2002) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D. Bazeia, R.F. Ribeiro, M.M. Santos, Phys. Rev. D 54, 1852 (1996) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    C. Csaki, J. Erlich, T.J. Hollowood, Y. Shirman, Nucl. Phys. B 581, 309 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    C. Csaki, J. Erlich, T.J. Hollowood, Y. Shirman, Phys. Rev. Lett. 84, 5932 (2000) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W.T. Cruz, M.O. Tahim, C.A.S. Almeida, Phys. Lett. B 686, 259 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    M.O. Tahim, W.T. Cruz, C.A.S. Almeida, Phys. Rev. D 79, 085022 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    W.T. Cruz, M.O. Tahim, C.A.S. Almeida, Europhys. Lett. 88, 41001 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    C. van de Bruck, J.M. Weller, Phys. Rev. D 80, 123014 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    K. Skenderis, P.K. Townsend, Phys. Lett. B 468, 46 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    D. Bazeia, A.R. Gomes, J. High Energy Phys. 0405, 012 (2004) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    A. Kehagias, K. Tamvakis, Phys. Lett. B 504, 38 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    B. Bajc, G. Gabadadze, Phys. Lett. B 474, 282 (2000) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Instituto Federal de EducaçãoCiência e Tecnologia do Ceará (IFCE)Juazeiro do NorteBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations