Skip to main content
Log in

Radiative events as a probe of dark forces at GeV-scale e + e colliders

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

High-luminosity e + e colliders at the GeV scale (flavor factories) have been recently recognized to be an ideal environment to search for a light weakly coupled vector boson U (dark photon) emerging in several new physics models. At flavor factories a particularly clean channel is the production of the U boson in association with a photon, followed by the decay of the U boson into lepton pairs. Beyond the approximations addressed in previous works, we perform an exact lowest order calculation of the signal and background processes of this channel. We also include the effect of initial- and final-state QED corrections neglected so far, to show how they affect the distributions of experimental interest. We present new results for the expected statistical significance to a dark photon signal at KLOE/KLOE-2 and future super-B factories. The calculation is implemented in a new release of the event generator BabaYaga@NLO, which is available for full event simulations and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jean et al., Astron. Astrophys. 407, L55 (2003). arXiv:astro-ph/0309484

    Article  ADS  Google Scholar 

  2. O. Adriani et al. (PAMELA), Nature 458, 607 (2009). arXiv:0810.4995

    Article  ADS  Google Scholar 

  3. J. Chang et al., Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  4. A.A. Abdo et al. (The Fermi LAT), Phys. Rev. Lett. 102, 181101 (2009). arXiv:0905.0025

    Article  ADS  Google Scholar 

  5. F. Aharonian et al. (H.E.S.S.), Phys. Rev. Lett. 101, 261104 (2008). arXiv:0811.3894

    Article  ADS  Google Scholar 

  6. R. Bernabei et al. (DAMA), Eur. Phys. J. C 56, 333 (2008). arXiv:0804.2741

    Article  ADS  Google Scholar 

  7. C.E. Aalseth et al. (CoGeNT), arXiv:1002.4703 (2010)

  8. C.E. Aalseth et al. (CoGeNT), Phys. Rev. Lett. 101, 251301 (2008). arXiv:0807.0879

    Article  ADS  Google Scholar 

  9. C. Boehm, P. Fayet, Nucl. Phys. B 683, 219 (2004). arXiv:hep-ph/0305261

    Article  ADS  Google Scholar 

  10. M. Pospelov, A. Ritz, M.B. Voloshin, Phys. Lett. B 662, 53 (2008). arXiv:0711.4866

    Article  ADS  Google Scholar 

  11. M. Pospelov, A. Ritz, Phys. Lett. B 671, 391 (2009). arXiv:0810.1502

    Article  ADS  Google Scholar 

  12. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer et al., Phys. Rev. D 79, 015014 (2009). arXiv:0810.0713

    Article  ADS  Google Scholar 

  13. I. Cholis, G. Dobler, D.P. Finkbeiner et al., Phys. Rev. D 80, 123518 (2009). arXiv:0811.3641

    Article  ADS  Google Scholar 

  14. Y. Mambrini, J. Cosmol. Astropart. Phys. 1009, 022 (2010). arXiv:1006.3318

    Article  ADS  Google Scholar 

  15. B. Holdom, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  16. K.R. Dienes, C.F. Kolda, J. March-Russell, Nucl. Phys. B 492, 104 (1997). arXiv:hep-ph/9610479

    ADS  Google Scholar 

  17. M. Pospelov, Phys. Rev. D 80, 095002 (2009). arXiv:0811.1030

    Article  ADS  Google Scholar 

  18. J.D. Bjorken, R. Essig, P. Schuster et al., Phys. Rev. D 80, 075018 (2009). arXiv:0906.0580

    Article  ADS  Google Scholar 

  19. M. Freytsis, G. Ovanesyan, J. Thaler, J. High Energy Phys. 01, 111 (2010). arXiv:0909.2862

    Article  ADS  Google Scholar 

  20. R. Essig, P. Schuster, N. Toro et al., arXiv:1001.2557 (2010)

  21. N. Borodatchenkova, D. Choudhury, M. Drees, Phys. Rev. Lett. 96, 141802 (2006). arXiv:hep-ph/0510147

    Article  ADS  Google Scholar 

  22. B. Batell, M. Pospelov, A. Ritz, Phys. Rev. D 79, 115008 (2009). arXiv:0903.0363

    Article  ADS  Google Scholar 

  23. P.-f. Yin, J. Liu, S.-h. Zhu, Phys. Lett. B 679, 362 (2009). arXiv:0904.4644

    Article  ADS  Google Scholar 

  24. F. Bossi, arXiv:0904.3815 (2009)

  25. R. Essig, P. Schuster, N. Toro, Phys. Rev. D 80, 015003 (2009). arXiv:0903.3941

    Article  ADS  Google Scholar 

  26. M. Reece, L.-T. Wang, J. High Energy Phys. 07, 051 (2009). arXiv:0904.1743

    Article  ADS  Google Scholar 

  27. M. Baumgart, C. Cheung, J.T. Ruderman et al., J. High Energy Phys. 04, 014 (2009). arXiv:0901.0283

    Article  ADS  Google Scholar 

  28. H.-B. Li, T. Luo, Phys. Lett. B 686, 249 (2010). arXiv:0911.2067

    Article  ADS  Google Scholar 

  29. http://www-conf.slac.stanford.edu/darkforces2009/

  30. S. Actis et al., Eur. Phys. J. C 66, 585 (2010). arXiv:0912.0749

    Article  Google Scholar 

  31. F. Caravaglios, M. Moretti, Phys. Lett. B 358, 332 (1995). arXiv:hep-ph/9507237

    Article  ADS  Google Scholar 

  32. C.M. Carloni Calame, C. Lunardini, G. Montagna et al., Nucl. Phys. B 584, 459 (2000). arXiv:hep-ph/0003268

    Article  ADS  Google Scholar 

  33. C.M. Carloni Calame, Phys. Lett. B 520, 16 (2001). arXiv:hep-ph/0103117

    Article  ADS  MATH  Google Scholar 

  34. C.M. Carloni Calame, G. Montagna, O. Nicrosini et al., Nucl. Phys. Proc. Suppl. 131, 48 (2004). arXiv:hep-ph/0312014

    Article  ADS  Google Scholar 

  35. G. Balossini, C.M. Carloni Calame, G. Montagna et al., Nucl. Phys. B 758, 227 (2006). arXiv:hep-ph/0607181

    Article  ADS  Google Scholar 

  36. G. Balossini et al., Phys. Lett. B 663, 209 (2008). arXiv:0801.3360

    Article  ADS  Google Scholar 

  37. T. Teubner, K. Hagiwara, R. Liao et al., arXiv:1001.5401 (2010)

  38. E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985)

    Google Scholar 

  39. O. Nicrosini, L. Trentadue, Phys. Lett. B 196, 551 (1987)

    Article  ADS  Google Scholar 

  40. G. Montagna, F. Piccinini, O. Nicrosini, Phys. Rev. D 48, 1021 (1993)

    Article  ADS  Google Scholar 

  41. F. Jegerlehner, Nucl. Phys. Proc. Suppl. 162, 22 (2006). arXiv:hep-ph/0608329

    Article  ADS  Google Scholar 

  42. G. Amelino-Camelia et al., arXiv:1003.3868 (2010)

  43. M. Bona et al., arXiv:0709.0451 (2007)

  44. B. Golob, arXiv:1006.4208 (2010)

  45. The code can be downloaded at the web link http://www.pv.infn.it/~hepcomplex

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Piccinini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzè, L., Balossini, G., Bignamini, C. et al. Radiative events as a probe of dark forces at GeV-scale e + e colliders. Eur. Phys. J. C 71, 1680 (2011). https://doi.org/10.1140/epjc/s10052-011-1680-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1680-8

Keywords

Navigation