Skip to main content
Log in

A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we consider a Beta Beam setup that tries to leverage at most existing European facilities: i.e. a setup that takes advantage of facilities at CERN to boost high-Q ions (8Li and 8B) aiming at a far detector located at L=732 km in the Gran Sasso Underground Laboratory. The average neutrino energy for 8Li and 8B ions boosted at γ∼100 is in the range E ν ∈[1,2] GeV, high enough to use a large iron detector of the MINOS type at the far site. We perform, then, a study of the neutrino and antineutrino fluxes needed to measure a CP-violating phase δ in a significant part of the parameter space. In particular, for θ 13≥3°, if an antineutrino flux of 3×1019 useful 8Li decays per year is achievable, we find that δ can be measured in 60% of the parameter space with 3×1018 useful 8B decays per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Itow et al. (The T2K Collaboration), arXiv:hep-ex/0106019

  2. D.S. Ayres et al. (NOvA Collaboration), arXiv:hep-ex/0503053. See also http://www-nova.fnal.gov

  3. F. Ardellier et al. (Double Chooz Collaboration), arXiv:hep-ex/0606025

  4. X. Guo et al. (Daya-Bay Collaboration), arXiv:hep-ex/0701029

  5. S.B. Kim (RENO Collaboration), AIP Conf. Proc. 981, 205 (2008) [J. Phys. Conf. Ser. 120 (2008) 052025]

    Article  ADS  Google Scholar 

  6. T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 10, 113011 (2008)

    Article  ADS  Google Scholar 

  7. M. Apollonio et al. (CHOOZ Collaboration), Eur. Phys. J. C 27, 331 (2003)

    Article  ADS  Google Scholar 

  8. F. Boehm et al., Phys. Rev. D 64, 112001 (2001)

    Article  ADS  Google Scholar 

  9. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008). arXiv:0704.1800 [hep-ph]

    Article  ADS  Google Scholar 

  10. A.B. Balantekin, D. Yilmaz, J. Phys. G 35, 075007 (2008)

    Article  ADS  Google Scholar 

  11. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, Phys. Rev. Lett. 101, 141801 (2008)

    Article  ADS  Google Scholar 

  12. M. Maltoni, T. Schwetz, arXiv:0812.3161 [hep-ph]

  13. B. Aharmin et al. (SNO Collaboration), arXiv:0910.2984 [nucl-ex]

  14. M. Mezzetto, in Proceedings of “Thirteen International Workshop on Neutrino Telescopes”, Venezia, 10–13 March (2009), p. 421. arXiv:0905.2842 [hep-ph]

    Google Scholar 

  15. A. De Rujula, M.B. Gavela, P. Hernandez, Nucl. Phys. B 547, 21 (1999)

    Article  ADS  Google Scholar 

  16. P. Huber, M. Lindner, T. Schwetz, W. Winter, J. High Energy Phys. 0911, 044 (2009)

    Article  ADS  Google Scholar 

  17. A. Bandyopadhyay et al. (ISS Physics Working Group), Rep. Prog. Phys. 72, 106201 (2009)

    Article  ADS  Google Scholar 

  18. T. Abe et al. (ISS Detector Working Group), J. Instrum. 4, T05001 (2009)

    Article  Google Scholar 

  19. J.S. Berg et al. (ISS Accelerator Working Group), J. Instrum. 4, P07001 (2009)

    Article  Google Scholar 

  20. M. Lindroos, M. Mezzetto, Artificial Neutrino Beams: Beta Beams (Imperial College Press, London, 2009), and references therein

    Google Scholar 

  21. P. Zucchelli, Phys. Lett. B 532, 166 (2002)

    Article  ADS  Google Scholar 

  22. R. Battiston, M. Mezzetto, P. Migliozzi, F. Terranova, Riv. Nuovo Cim. 033, 313–343 (2010). arXiv:0912.3372 [hep-ex]

    Google Scholar 

  23. E. Wildner, Beta Beam. Talk at the 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams. Information on the EUROν Working package 4: “Beta Beam” are available at http://www.euronu.org/

  24. J. Bernabeu et al., First Yearly Report of the Euroν Working Package 6 (Physics)

  25. J. Bouchez, M. Lindroos, M. Mezzetto, AIP Conf. Proc. 721, 37 (2004)

    Article  ADS  Google Scholar 

  26. M. Mezzetto, J. Phys. G 29, 1771 (2003)

    Article  ADS  Google Scholar 

  27. M. Mezzetto, Nucl. Phys. B, Proc. Suppl. 143, 309 (2005)

    Article  ADS  Google Scholar 

  28. A. Donini, E. Fernandez-Martinez, P. Migliozzi, S. Rigolin, L. Scotto Lavina, Nucl. Phys. B 710, 402 (2005)

    Article  ADS  Google Scholar 

  29. A. Donini, E. Fernández-Martínez, S. Rigolin, Phys. Lett. B 621, 276 (2005)

    Article  ADS  Google Scholar 

  30. J. Burguet-Castell, D. Casper, J.J. Gomez-Cadenas, P. Hernandez, F. Sanchez, Nucl. Phys. B 695, 217 (2004)

    Article  ADS  Google Scholar 

  31. J. Burguet-Castell, D. Casper, E. Couce, J.J. Gomez-Cadenas, P. Hernandez, Nucl. Phys. B 725, 306 (2005)

    Article  ADS  Google Scholar 

  32. F. Terranova, A. Marotta, P. Migliozzi, M. Spinetti, Eur. Phys. J. C 38, 69 (2004)

    Article  ADS  Google Scholar 

  33. S.K. Agarwalla, A. Raychaudhuri, A. Samanta, Phys. Lett. B 629, 33 (2005)

    Article  ADS  Google Scholar 

  34. P. Huber, M. Lindner, M. Rolinec, W. Winter, Phys. Rev. D 73, 053002 (2006)

    Article  ADS  Google Scholar 

  35. A. Donini, E. Fernández-Martínez, P. Migliozzi, S. Rigolin, L. Scotto Lavina, T. Tabarelli de Fatis, F. Terranova, Eur. Phys. J. C 48, 787 (2006)

    Article  ADS  Google Scholar 

  36. A. Donini et al., Eur. Phys. J. C 53, 599 (2008)

    Article  ADS  Google Scholar 

  37. C. Rubbia, A. Ferrari, Y. Kadi, V. Vlachoudis, Nucl. Instrum. Methods A 568, 475 (2006)

    Article  ADS  Google Scholar 

  38. C. Rubbia, arXiv:hep-ph/0609235

  39. A. Donini, E. Fernández-Martínez, Phys. Lett. B 641, 432 (2006)

    Article  ADS  Google Scholar 

  40. S.K. Agarwalla, S. Choubey, A. Raychaudhuri, Nucl. Phys. B 771, 1 (2007)

    Article  ADS  Google Scholar 

  41. S.K. Agarwalla, S. Choubey, A. Raychaudhuri, Nucl. Phys. B 798, 124 (2008)

    ADS  MATH  Google Scholar 

  42. P. Coloma, A. Donini, E. Fernandez-Martinez, J. Lopez-Pavon, J. High Energy Phys. 0805, 050 (2008)

    Article  ADS  Google Scholar 

  43. A. Jansson, O. Mena, S.J. Parke, N. Saoulidou, Phys. Rev. D 78, 053002 (2008). arXiv:0711.1075 [hep-ph]

    Article  ADS  Google Scholar 

  44. W. Winter, Phys. Rev. D 78, 037101 (2008)

    Article  ADS  Google Scholar 

  45. S.K. Agarwalla, S. Choubey, A. Raychaudhuri, Nucl. Phys. B 805, 305 (2008)

    Article  ADS  Google Scholar 

  46. S.K. Agarwalla, S. Choubey, A. Raychaudhuri, W. Winter, J. High Energy Phys. 0806, 090 (2008)

    Article  ADS  Google Scholar 

  47. D. Meloni, O. Mena, C. Orme, S. Palomares-Ruiz, S. Pascoli, J. High Energy Phys. 0807, 115 (2008)

    Article  ADS  Google Scholar 

  48. S. Choubey, P. Coloma, A. Donini, E. Fernandez-Martinez, J. High Energy Phys. 0912, 020 (2009)

    Article  ADS  Google Scholar 

  49. E. Fernandez-Martinez, Nucl. Phys. B 833, 96 (2010)

    Article  ADS  MATH  Google Scholar 

  50. S. Geer, Phys. Rev. D 57, 6989 (1998) [Erratum-ibid. D 59 (1999) 039903]

    Article  ADS  Google Scholar 

  51. J.E. Campagne, M. Maltoni, M. Mezzetto, T. Schwetz, J. High Energy Phys. 0704, 003 (2007)

    Article  ADS  Google Scholar 

  52. M. Marafini, Talk at the 10th Workshop on “Next Generation Nucleon decay and Neutrino Detectors” (NNN09), 8–10 October 2009, Estes Park, Colorado

  53. “Proton Accelerator for the Future” (PAF) CERN inter-departmental working group webpage, http://pofpa.web.cern.ch/pofpa/

  54. A. Donini, M. Lindroos, Presented at 10th International Workshop on Neutrino Factories, Superbeams and Betabeams: Nufact08, Valencia, Spain, 30 Jun–5 Jul 2008

  55. P. Lipari et al., Phys. Rev. Lett. 74, 4384 (1995)

    Article  ADS  Google Scholar 

  56. Information available at http://paf-ps2.web.cern.ch/paf-ps2/

  57. A. Donini, Talk at the CARE04 Workshop, 2–5 Nov. 2004, DESY, Hamburg. http://www-mhf.desy.de/public/care04/2004.11.03sr2/hampro.pdf

  58. Y. Mori, Nucl. Instrum. Methods A 562, 591 (2006)

    Article  ADS  Google Scholar 

  59. A.N. Skrinsky, V.V. Parkhomchuk, Sov. J. Nucl. Phys. 12, 3 (1981)

    Google Scholar 

  60. B. Autin et al., J. Phys. G 29, 1785 (2003). http://www.targisol.csic.es/introdatabase.html

    Article  ADS  Google Scholar 

  61. W.T. Winter et al., Phys. Rev. Lett. 91, 252501 (2003)

    Article  ADS  Google Scholar 

  62. D. Neuffer et al., Nucl. Instrum. Methods A 585, 109 (2008)

    Article  ADS  Google Scholar 

  63. M. Mezzetto, Nucl. Phys. B, Proc. Suppl. 155, 214 (2006). arXiv:hep-ex/0511005

    Article  ADS  Google Scholar 

  64. M. Benedikt, A. Fabich, S. Hancock, M. Lindroos, Nucl. Phys. B, Proc. Suppl. 155, 211 (2006)

    Article  ADS  Google Scholar 

  65. N.Y. Agafonova et al. (MONOLITH Collaboration), MONOLITH: A massive magnetized iron detector for neutrino oscillation studies. LNGS-P26-2000, CERN-SPSC-2000-031, CERN-SPSC-M-657

  66. See http://www.ino.tifr.res.in/ino/

  67. GEANT—Detector Description and Simulation Tool CERN Program Library Long Writeup W5013

  68. A. Ghezzi, T. Tabarelli de Fatis, G. Tinti, M. Piccolo, Digital hadron calorimetry with glass RPC active detectors. Contributed to 2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18–22 Mar 2005. arXiv:physics/0507021

  69. M. Ambrosio et al., Nucl. Instrum. Methods A 456, 67 (2000)

    Article  ADS  Google Scholar 

  70. A. Laing, A. Cervera-Villanueva, PoS NUFACT08, 042 (2008)

  71. A. Cervera, F. Dydak, J. Gomez Cadenas, Nucl. Instrum. Methods A 451, 123 (2000)

    Article  ADS  Google Scholar 

  72. J.K. Nelson, Magnetized iron calorimeters, in European Strategy for Future Neutrino Physics Workshop, CERN, Switzerland, 1–3 October 2009

    Google Scholar 

  73. R. Acquafredda et al., J. Instrum. 4, P04018 (2009)

    Article  Google Scholar 

  74. G. Alimonti et al. (Borexino Collaboration), Nucl. Instrum. Methods A 600, 568 (2009)

    Article  ADS  Google Scholar 

  75. P. Huber, M. Lindner, W. Winter, Nucl. Phys. B 645, 3 (2002). arXiv:hep-ph/0204352

    Article  ADS  Google Scholar 

  76. H. Minakata, H. Nunokawa, J. High Energy Phys. 0110, 001 (2001)

    Article  ADS  Google Scholar 

  77. A. Donini, D. Meloni, S. Rigolin, J. High Energy Phys. 0406, 011 (2004)

    Article  ADS  Google Scholar 

  78. H. Minakata, S. Uchinami, arXiv:1001.4219 [hep-ph]

  79. T. Tabarelli de Fatis, Eur. Phys. J. C 24, 43 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Donini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coloma, P., Donini, A., Migliozzi, P. et al. A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector. Eur. Phys. J. C 71, 1674 (2011). https://doi.org/10.1140/epjc/s10052-011-1674-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1674-6

Keywords

Navigation