Advertisement

Fermionic Casimir effect with helix boundary condition

Regular Article - Theoretical Physics

Abstract

In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Feng and Li (Phys. Lett. B 691:167, 2010), Zhai et al. (Mod. Phys. Lett. A 26:669, 2011) is something like that between a Möbius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the (D+1)-dimensional space-time. For both massless and massive cases, there is a Z 2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity.

Keywords

Vacuum Energy Casimir Force Casimir Energy Massive Case Massless Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948) MATHGoogle Scholar
  2. 2.
    M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, London, 2009) MATHCrossRefGoogle Scholar
  3. 3.
    C.J. Feng, X.Z. Li, Phys. Lett. B 691, 167 (2010) ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    X.H. Zhai, X.Z. Li, C.J. Feng, Mod. Phys. Lett. A 26, 669 (2011) ADSMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Amsterdam, 1984) MATHGoogle Scholar
  6. 6.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1993) Google Scholar
  7. 7.
    T.M. Helliwell, D.A. Konkowski, Phys. Rev. D 34, 1918 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    I. Brevik, H.B. Nielsen, Phys. Rev. D 41, 1185 (1990) ADSMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    X.Z. Li, X. Shi, J.Z. Zhang, Phys. Rev. D 44, 560 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    I. Brevik, E. Elizalde, Phys. Rev. D 49, 5319 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    I. Brevik, K.A. Milton, S.D. Odintsov, Ann. Phys. 302, 120 (2002) ADSMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    X. Shi, X.Z. Li, Class. Quantum Gravity 8, 75 (1991) ADSMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    X.Z. Li, H.B. Cheng, J.M. Li, X.H. Zhai, Phys. Rev. D 56, 2155 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    X.Z. Li, X.H. Zhai, J. Phys. A 34, 11053 (2001) ADSMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R.M. Cavalcanti, Phys. Rev. D 69, 065015 (2004) ; ADSCrossRefGoogle Scholar
  16. 16.
    M.P. Hertzberg, R.L. Jaffe, M. Kardar, A. Scardicchio, Phys. Rev. Lett. 95, 250402 (2005) ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    X.H. Zhai, X.Z. Li, Phys. Rev. D 76, 047704 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    X.H. Zhai, Y.Y. Zhang, X.Z. Li, Mod. Phys. Lett. A 24, 393 (2009) ADSMATHCrossRefGoogle Scholar
  19. 19.
    S.C. Lim, L.P. Teo, Eur. Phys. J. C 60, 323 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskorf, Phys. Rev. D 9, 3471 (1974) ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    E. Elizalde, F.C. Santos, A.C. Tort, Int. J. Mod. Phys. A 18, 1761 (2003) ADSMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    H. Queiroz, J.C. da Silva, F.C. Khanna, J.M.C. Malbouisson, M. Revzen, A.E. Santana, Ann. Phys. 317, 220 (2005) ADSMATHCrossRefGoogle Scholar
  23. 23.
    A. Erdas, Phys. Rev. D 83, 025005 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    V.K. Oikonomou, N.D. Tracas, Int. J. Mod. Phys. A 25, 5935 (2010) ADSMATHCrossRefGoogle Scholar
  25. 25.
    S. Bellucci, A.A. Saharian, Phys. Rev. D 80, 105003 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    E. Elizalde, S.D. Odintsov, A.A. Saharian, arXiv:1102.2202
  27. 27.
    E. Elizalde, Commun. Math. Phys. 198, 83 (1998) ADSMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Shanghai United Center for Astrophysics (SUCA)Shanghai Normal UniversityShanghaiChina

Personalised recommendations