Advertisement

HELAS and MadGraph with goldstinos

Open Access
Special Article - Tools for Experiment and Theory

Abstract

Fortran subroutines to calculate helicity amplitudes with goldstinos, which appear as the longitudinal modes of massive gravitinos in high energy processes, are added to the HELAS (HELicity Amplitude Subroutines) library. They are coded in such a way that arbitrary amplitudes with external goldstinos can be generated automatically by MadGraph, after slight modifications. All the codes have been tested carefully by making use of the goldstino equivalence theorem and the gauge invariance of the helicity amplitudes. Hadronic total cross sections for associated gravitino productions with a gluino and a squark are also presented.

Keywords

Minimal Supersymmetric Standard Model High Energy Phys Vector Boson SUSY Breaking Light Supersymmetric Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    K. Hagiwara, K. Mawatari, Y. Takaesu, Eur. Phys. J. C 71, 1529 (2011) ADSGoogle Scholar
  3. 3.
    K. Hagiwara, H. Murayama, I. Watanabe, Nucl. Phys. B 367, 257 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    H. Murayama, I. Watanabe, K. Hagiwara, KEK-Report 91-11 (1992) Google Scholar
  5. 5.
    T. Stelzer, W.F. Long, Comput. Phys. Commun. 81, 357 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    G.C. Cho, K. Hagiwara, J. Kanzaki, T. Plehn, D. Rainwater, T. Stelzer, Phys. Rev. D 73, 054002 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    F. Maltoni, T. Stelzer, J. High Energy Phys. 0302, 027 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. Rainwaterd, T. Stelzer, J. High Energy Phys. 0709, 028 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    C. Cheung, Y. Nomura, J. Thaler, J. High Energy Phys. 1003, 073 (2010) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    T. Lee, G.H. Wu, Phys. Lett. B 447, 83 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    M. Bolz, A. Brandenburg, W. Buchmuller, Nucl. Phys. B 606, 518 (2001) [Erratum ibid. 790, 336 (2008)] ADSCrossRefGoogle Scholar
  13. 13.
    M. Klasen, G. Pignol, Phys. Rev. D 75, 115003 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    D.E. Morrissey, T. Plehn, T.M.P. Tait, arXiv:0912.3259 [hep-ph]
  15. 15.
    D.A. Dicus, S. Nandi, J. Woodside, Phys. Rev. D 41, 2347 (1990) ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Dicus, S. Nandi, Phys. Rev. D 56, 4166 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    J. Kim, J.L. Lopez, D.V. Nanopoulos, R. Rangarajan, A. Zichichi, Phys. Rev. D 57, 373 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Affolder (CDF Collaboration), Phys. Rev. Lett. 85, 1378 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Nucl. Phys. B 526, 136 (1998) [Erratum ibid. 582, 759 (2000)] ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Theoretische Natuurkunde and IIHE/ELEMVrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium
  2. 2.KEK Theory Center, and SokendaiTsukubaJapan

Personalised recommendations