Advertisement

R2SM: a package for the analytic computation of the R 2 Rational terms in the Standard Model of the Electroweak interactions

Special Article - Tools for Experiment and Theory

Abstract

The analytical package written in FORM presented in this paper allows the computation of the complete set of Feynman Rules producing the Rational terms of kind R2 contributing to the virtual part of NLO corrections in the Standard Model of the Electroweak interactions. Building block topologies filled by means of generic scalars, vectors and fermions, allowing to build these Feynman Rules in terms of specific elementary particles, are explicitly given in the R ξ gauge class, together with the automatic dressing procedure to obtain the Feynman Rules from them. The results in more specific gauges, like the ’t Hooft Feynman one, follow as particular cases, in both the HV and the FDH dimensional regularization schemes. As a check on our formulas, the gauge independence of the total Rational contribution (R1+R2) to renormalized S-matrix elements is verified by considering the specific example of the H→γγ decay process at 1-loop. This package can be of interest for people aiming at a better understanding of the nature of the Rational terms. It is organized in a modular way, allowing a further use of some its files even in different contexts. Furthermore, it can be considered as a first seed in the effort towards a complete automation of the process of the analytical calculation of the R2 effective vertices, given the Lagrangian of a generic gauge theory of particle interactions.

Keywords

High Energy Phys Feynman Rule Loop Momentum Unitary Gauge External Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979) ADSCrossRefGoogle Scholar
  2. 2.
    A. Denner, S. Dittmaier, Nucl. Phys. B 734, 62–115 (2006). arXiv:hep-ph/0509141 ADSMATHCrossRefGoogle Scholar
  3. 3.
    A. Denner, S. Dittmaier, Nucl. Phys. B 844, 199–242 (2011). arXiv:1005.2076 [hep-ph] MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter, Comput. Phys. Commun. 180, 2317–2330 (2009). arXiv:0810.0992 [hep-ph] ADSMATHCrossRefGoogle Scholar
  5. 5.
    G. Heinrich, G. Ossola, T. Reiter, F. Tramontano, J. High Energy Phys. 1010, 105 (2010). arXiv:1008.2441 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    G. ’t Hooft, M. Veltman, Diagrammar, CERN Report 73-9, Geneva, Switzerland (1973), also published in NATO Adv. Stud. Inst. Ser., Ser. B Phys. 4, 177–322 (1974) Google Scholar
  7. 7.
    Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 425, 217 (1994). arXiv:hep-ph/9403226 MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 435, 59 (1995). arXiv:hep-ph/9409265 ADSCrossRefGoogle Scholar
  9. 9.
    Z. Bern, L.J. Dixon, D.A. Kosower, Nucl. Phys. B 513, 3 (1998). arXiv:hep-ph/9708239 ADSCrossRefGoogle Scholar
  10. 10.
    R. Britto, F. Cachazo, B. Feng, Nucl. Phys. B 725, 275 (2005). arXiv:hep-th/0412103 MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J.R. Andersen, J. Archibald, S. Badger et al., Summary Report of the SM and NLO Multileg Working Group, in Proc. of the Les Houches Workshop “Physics at TeV Colliders”, les Houches, France, 8–26 June 2009. arXiv:1003.1241 [hep-ph]
  12. 12.
    C.F. Berger, Z. Bern, L.J. Dixon et al., arXiv:1009.2338 [hep-ph]
  13. 13.
    C.F. Berger, Z. Bern, L.J. Dixon et al., Phys. Rev. Lett. 102, 222001 (2009). arXiv:0902.2760 [hep-ph] ADSCrossRefGoogle Scholar
  14. 14.
    C.F. Berger, Z. Bern, L.J. Dixon et al., Phys. Rev. D 80, 074036 (2009). arXiv:0907.1984 [hep-ph] ADSCrossRefGoogle Scholar
  15. 15.
    C.F. Berger, Z. Bern, L.J. Dixon et al., Phys. Rev. D 82, 074002 (2010). arXiv:1004.1659 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    R.K. Ellis, K. Melnikov, G. Zanderighi, Phys. Rev. D 80, 094002 (2009). arXiv:0906.1445 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau, M. Worek, J. High Energy Phys. 0909, 109 (2009). arXiv:0907.4723 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, Phys. Rev. Lett. 103, 012002 (2009). arXiv:0905.0110 [hep-ph] ADSCrossRefGoogle Scholar
  19. 19.
    A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, J. High Energy Phys. 1003, 021 (2010). arXiv:1001.4006v1 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    K. Melnikov, G. Zanderighi, Phys. Rev. D 81, 074025 (2010). arXiv:0910.3671 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    T. Binoth, N. Greiner, A. Guffanti et al., Phys. Lett. B 685, 293–296 (2010). arXiv:0910.4379 [hep-ph] ADSCrossRefGoogle Scholar
  22. 22.
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys. Rev. Lett. 104, 162002 (2010). arXiv:1002.4009 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    A. Denner, S. Dittmaier, T. Gehrmann, C. Kurz, Nucl. Phys. B 836, 37 (2010). arXiv:1003.0986 [hep-ph] ADSMATHCrossRefGoogle Scholar
  24. 24.
    T. Melia, K. Melnikov, R. Rontsch, G. Zanderighi, J. High Energy Phys. 1012, 053 (2010). arXiv:1007.5313 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    R. Frederix, S. Frixione, K. Melnikov, G. Zanderighi, J. High Energy Phys. 1011, 050 (2010). arXiv:1008.5313 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    Z.G. Xiao, G. Yang, C.J. Zhu, Nucl. Phys. B 758, 1–34 (2006). arXiv:hep-ph/0607015 ADSMATHCrossRefGoogle Scholar
  27. 27.
    Z.G. Xiao, G. Yang, C.J. Zhu, Nucl. Phys. B 758, 53–89 (2006). arXiv:hep-ph/0607017 ADSMATHCrossRefGoogle Scholar
  28. 28.
    T. Binoth, J.P. Guillet, G. Heinrich, J. High Energy Phys. 0702, 013 (2007). arXiv:hep-ph/0609054 ADSCrossRefGoogle Scholar
  29. 29.
    A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, J. High Energy Phys. 0808, 108 (2008). arXiv:0807.1248 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    C.F. Berger, D. Forde, Ann. Rev. Nucl. Part. Sci. (2010). arXiv:0912.3534 [hep-ph]
  31. 31.
    Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 71, 105013 (2005). arXiv:hep-th/0501240 MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 72, 125003 (2005). arXiv:hep-ph/0505055 MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 73, 065013 (2006). arXiv:hep-ph/0507005 MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde, D.A. Kosower, Phys. Rev. D 74, 036009 (2006). arXiv:hep-ph/0604195 ADSCrossRefGoogle Scholar
  35. 35.
    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde, D.A. Kosower, Phys. Rev. D 75, 016006 (2007). arXiv:hep-ph/0607014 ADSCrossRefGoogle Scholar
  36. 36.
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, Phys. Lett. B 645, 213 (2007). arXiv:hep-ph/0609191 ADSCrossRefGoogle Scholar
  37. 37.
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, J. High Energy Phys. 0703, 111 (2007). arXiv:hep-ph/0612277 MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    W.T. Giele, Z. Kunszt, K. Melnikov, J. High Energy Phys. 0804, 049 (2008). arXiv:0801.2237 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, Nucl. Phys. B 822, 270 (2009). arXiv:0806.3467 [hep-ph] ADSMATHCrossRefGoogle Scholar
  40. 40.
    P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, J. High Energy Phys. 1008, 080 (2010). arXiv:1006.0710 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    G. Ossola, C.G. Papadopoulos, R. Pittau, Nucl. Phys. B 763, 147 (2007). arXiv:hep-ph/0609007 MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0805, 004 (2008). arXiv:0802.1876 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    A. van Hameren, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0909, 106 (2009). arXiv:0903.4665 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    G. Bevilacqua, M. Czakon, M.V. Garzelli et al., in Proc. of the 10th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Worlitz, Germany, April 25–30 (2010), published in Nucl. Phys. B, Proc. Suppl. 205–206, 211 (2010). arXiv:1007.4918 [hep-ph] Google Scholar
  45. 45.
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0904, 072 (2009). arXiv:0903.0356 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    A. van Hameren, J. High Energy Phys. 0907, 088 (2009). arXiv:0905.1002 [hep-ph] CrossRefGoogle Scholar
  47. 47.
    T. Kinoshita, J. Math. Phys. 3, 650 (1962) ADSMATHCrossRefGoogle Scholar
  48. 48.
    T.D. Lee, M. Nauenberg, Phys. Rev. 133, 1549 (1964) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0707, 085 (2007). arXiv:0704.1271 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    T.D. Lee, C.-N. Yang, Phys. Rev. 128, 885 (1962) MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    C. Grosse-Knetter, R. Kogerler, Phys. Rev. D48, 2865 (1993). arXiv:hep-ph/9212268 MathSciNetADSGoogle Scholar
  52. 52.
    M.V. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1101, 029 (2011). arXiv:1009.4302 [hep-ph] ADSCrossRefGoogle Scholar
  53. 53.
    J.A.M. Vermaseren, arXiv:math-ph/0010025
  54. 54.
    J.A.M. Vermaseren, Nucl. Phys. B, Proc. Suppl. 183, 19 (2008). arXiv:0806.4080 [hep-ph] ADSCrossRefGoogle Scholar
  55. 55.
    J.A.M. Vermaseren, in Proc. of the 10th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Worlitz, Germany, April 25–30 (2010). arXiv:1006.4512 [hep-ph] Google Scholar
  56. 56.
    A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph] Google Scholar
  57. 57.
    F. del Aguila, R. Pittau, J. High Energy Phys. 0407, 017 (2004). arXiv:hep-ph/0404120 CrossRefGoogle Scholar
  58. 58.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  59. 59.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260, http://www.feynarts.de/ ADSMATHCrossRefGoogle Scholar
  60. 60.
    Z. Bern, D. Kosower, Nucl. Phys. B 379, 451–561 (1992) MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    D.Y. Bardin, G. Passarino, in The Standard Model in the Making: Precision Studies of the Electroweak Interactions (Clarendon, Oxford, 1999), pp. 493–494 Google Scholar
  62. 62.
    M.V. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1001, 040 (2010). arXiv:0910.3130 [hep-ph]] ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.INFN, Italia & Departamento de Física Teórica y del Cosmos y CAFPEUniversidad de GranadaGranadaSpain
  2. 2.Department of Theoretical High Energy Physics, Institute for Mathematics, Astrophysics and Particle PhysicsRadboud Universiteit NijmegenNijmegenThe Netherlands

Personalised recommendations