Hidden conformal symmetry of self-dual warped AdS3 black holes in topological massive gravity

Regular Article - Theoretical Physics


We extend the recently proposal of hidden conformal symmetry to the self-dual warped AdS3 black holes in topological massive gravity. It is shown that the wave equation of massive scalar field with sufficient small angular momentum can be reproduced by the SL(2, R) Casimir quadratic operator. Due to the periodic identification in the φ direction, it is found that only the left section of hidden conformal symmetry is broken to U(1), while the right section is unbroken, which only gives the left temperature of dual CFT. As a check of the dual CFT conjecture of self-warped AdS3 black hole, we further compute the Bekenstein–Hawking entropy and absorption cross section and quasinormal modes of scalar field perturbation and show these are just of the forms predicted by the dual CFT.


Black Hole High Energy Phys Massive Gravity Quasinormal Mode Casimir Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories. Ann. Phys. 140, 372 (1982) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive gauge theories. Phys. Rev. Lett. 48, 975 (1982) CrossRefADSGoogle Scholar
  3. 3.
    D. Anninos, W. Li, M. Padi, W. Song, A. Strominger, Warped AdS3 black holes. J. High Energy Phys. 0903, 130 (2009) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    K.A. Moussa, G. Clement, C. Leygnac, Class. Quantum Gravity 20, L277 (2003) CrossRefMATHADSGoogle Scholar
  5. 5.
    A. Bouchareb, G. Clement, Class. Quantum Gravity 24, 5581 (2007) CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    K.A. Moussa, G. Clement, H. Guennoune, C. Leygnac, Phys. Rev. D 78, 064065 (2008) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. Compere, S. Detournay, Semi-classical central charge in topologically massive gravity. Class. Quantum Gravity 26, 012001 (2009) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    G. Compere, S. Detournay, Boundary conditions for spacelike and timelike warped AdS3 spaces in topologically massive gravity. J. High Energy Phys. 0908, 092 (2009) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    M. Blagojevic, B. Cvetkovic, Asymptotic structure of topologically massive gravity in spacelike stretched AdS sector. J. High Energy Phys. 0909, 006 (2009) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    R. Fareghbal, Hidden conformal symmetry of the warped AdS3 black hole. arXiv:1006.4034 [hep-th]
  11. 11.
    B. Chen, G. Moutsopoulos, B. Ning, Self-dual warped AdS3 black holes. arXiv:1005.4175 [hep-th]
  12. 12.
    M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D 80, 124008 (2009) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    T. Hartman, K. Murata, T. Nishioka, A. Strominger, CFT duals for extreme black holes. J. High Energy Phys. 0904, 019 (2009) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. Castro, A. Maloney, A. Strominger, Hidden conformal symmetry of the Kerr black hole. arXiv:1004.0996 [hep-th]
  15. 15.
    C. Krishnan, Hidden conformal symmetries of five-dimensional black holes. arXiv:1004.3537 [hep-th]
  16. 16.
    C.M. Chen, J.R. Sun, Hidden conformal symmetry of the Reissner–Nordstrom black holes. arXiv:1004.3963 [hep-th]
  17. 17.
    Y.Q. Wang, Y.X. Liu, Hidden conformal symmetry of the Kerr–Newman black hole. arXiv:1004.4661 [hep-th]
  18. 18.
    B. Chen, J. Long, Real-time correlators and hidden conformal symmetry in Kerr/CFT correspondence. arXiv:1004.5039 [hep-th]
  19. 19.
    R. Li, M.-F. Li, J.-R. Ren, Entropy of Kaluza–Klein black hole from Kerr/CFT correspondence. arXiv:1004.5335 [hep-th]
  20. 20.
    D. Chen, P. Wang, H. Wu, Hidden conformal symmetry of rotating charged black holes. arXiv:1005.1404 [gr-qc]
  21. 21.
    M. Becker, S. Cremonini, W. Schulgin, Correlation functions and hidden conformal symmetry of Kerr black holes. arXiv:1005.3571 [hep-th]
  22. 22.
    B. Chen, J. Long, On holographic description of the Kerr–Newman-AdS-dS black holes. arXiv:1006.0157 [hep-th]
  23. 23.
    H. Wang, D. Chen, B. Mu, H. Wu, Hidden conformal symmetry of the Einstein–Maxwell–Dilaton–Axion black hole. arXiv:1006.0439 [gr-qc]
  24. 24.
    C.-M. Chen, Y.-M. Huang, J.-R. Sun, M.-F. Wu, S.-J. Zou, On holographic dual of the dyonic Reissner–Nordstrom black hole. arXiv:1006.4092 [hep-th]
  25. 25.
    C.-M. Chen, Y.-M. Huang, J.-R. Sun, M.-F. Wu, S.-J. Zou, Twofold hidden conformal symmetries of the Kerr–Newman black hole. arXiv:1006.4097 [hep-th]
  26. 26.
    C. Krishnan, Black hole vacua and rotation. arXiv:1005.1629 [hep-th]
  27. 27.
    I. Sachs, S.N. Solodukhin, Quasi-normal modes in topologically massive gravity. J. High Energy Phys. 0808, 003 (2008) CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    V.P. Frolov, K.S. Thorne, Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. Phys. Rev. D 39, 2125 (1989) CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    J.J. Oh, W. Kim, Absorption cross section in warped AdS3 black hole. J. High Energy Phys. 0901, 067 (2009) CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    H.-C. Kao, W.-Y. Wen, Absorption cross section in warped AdS3 black hole revisited. J. High Energy Phys. 0909, 102 (2009) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    R. Li, J.-R. Ren, Quasinormal modes of self-dual warped AdS3 black hole in topological massive gravity. arXiv:1008.3239 [hep-th]
  32. 32.
    B. Chen, J. Long, Hidden conformal symmetry and quasi-normal modes. arXiv:1009.1010 [hep-th]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Zhejiang Institute of Modern Physics, Department of PhysicsZhejiang UniversityHangzhouChina
  3. 3.Institute of Theoretical PhysicsLanzhou UniversityLanzhouChina

Personalised recommendations