Advertisement

Bi-local baryon interpolating fields with two flavors

  • V. Dmitrašinović
  • Hua-Xing Chen
Regular Article - Theoretical Physics

Abstract

We construct bi-local interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We use the restrictions following from the Pauli principle to derive relations/identities among the baryon operators with identical quantum numbers. Such relations that follow from the combined spatial, Dirac, color, and isospin Fierz transformations may be called the (total/complete) Fierz identities. These relations reduce the number of independent baryon operators with any given spin and isospin. We also study the Abelian and non-Abelian chiral transformation properties of these fields and place them into baryon chiral multiplets. Thus we derive the independent baryon interpolating fields with given values of spin (Lorentz group representation), chiral symmetry (U L (2)×U R (2) group representation) and isospin appropriate for the first angular excited states of the nucleon.

Keywords

Chiral Multiplet Pauli Principle Fierz Identity Chiral Transformation Axial Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Ohnuki, Unitary Representations of the Poincaré Group and Relativistic Wave Equations (World Scientific, Singapore, 1988) MATHGoogle Scholar
  2. 2.
    B.L. Ioffe, Nucl. Phys. B 188, 317 (1981) CrossRefADSGoogle Scholar
  3. 3.
    B.L. Ioffe, Nucl. Phys. B 191, 591 (1981) (E) CrossRefADSGoogle Scholar
  4. 4.
    B.L. Ioffe, Z. Phys. C 18, 67 (1983) CrossRefADSGoogle Scholar
  5. 5.
    Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Nucl. Phys. B 197, 55 (1982) CrossRefADSGoogle Scholar
  6. 6.
    D. Espriu, P. Pascual, R. Tarrach, Nucl. Phys. B 214, 285 (1983) CrossRefADSGoogle Scholar
  7. 7.
    T.D. Cohen, X. Ji, Phys. Rev. D 55, 6870 (1997) CrossRefADSGoogle Scholar
  8. 8.
    H.X. Chen, V. Dmitrašinović, A. Hosaka, K. Nagata, S.L. Zhu, Phys. Rev. D 78, 054021 (2008) CrossRefADSGoogle Scholar
  9. 9.
    H.X. Chen, V. Dmitrasinovic, A. Hosaka, Phys. Rev. D 81, 054002 (2010). arXiv:0912.4338 [hep-ph] CrossRefADSGoogle Scholar
  10. 10.
    S. Basak et al. (Lattice Hadron Physics Collaboration (LHPC)), Phys. Rev. D 72, 074501 (2005). arXiv:hep-lat/0508018 CrossRefADSGoogle Scholar
  11. 11.
    V. Dmitrašinović, K. Nagata, A. Hosaka, Mod. Phys. Lett. A 23, 2381 (2008). arXiv:0705.1896 [hep-ph] CrossRefADSGoogle Scholar
  12. 12.
    K. Nagata, A. Hosaka, V. Dmitrašinović, Phys. Rev. Lett. 101, 092001 (2008). arXiv:0804.3185 [hep-ph] CrossRefADSGoogle Scholar
  13. 13.
    K. Nagata, A. Hosaka, V. Dmitrašinović, Eur. Phys. J. C 57, 557 (2008) CrossRefADSGoogle Scholar
  14. 14.
    V. Dmitrašinović, A. Hosaka, K. Nagata, Mod. Phys. Lett. A 25, 233 (2010). arXiv:0912.2372 [hep-ph] CrossRefMATHADSGoogle Scholar
  15. 15.
    V. Dmitrašinović, A. Hosaka, K. Nagata, Int. J. Mod. Phys. E 19, 91 (2010). arXiv:0912.2396 [hep-ph] CrossRefADSGoogle Scholar
  16. 16.
    H.X. Chen, V. Dmitrasinovic, A. Hosaka, arXiv:1009.2422 [hep-ph]
  17. 17.
    A.B. Henriques, B.H. Kellett, R.G. Moorhouse, Ann. Phys. 93, 125 (1975) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    I.D. King, C.T. Sachrajda, Nucl. Phys. B 279, 785 (1987) CrossRefADSGoogle Scholar
  19. 19.
    M.G. Sotiropoulos, G.F. Sterman, Nucl. Phys. B 425, 489 (1994). arXiv:hep-ph/9401237 CrossRefADSGoogle Scholar
  20. 20.
    N.G. Stefanis, Eur. Phys. J. C 7, 1 (1999). arXiv:hep-ph/9911375 Google Scholar
  21. 21.
    U. Loring, K. Kretzschmar, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 309 (2001). arXiv:hep-ph/0103287 CrossRefADSGoogle Scholar
  22. 22.
    A. Kvinikhidze, G.A. Miller, Phys. Rev. C 76, 025203 (2007). arXiv:nucl-th/0701017 CrossRefADSGoogle Scholar
  23. 23.
    G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus, Phys. Rev. Lett. 104, 201601 (2010). arXiv:0912.2246 [hep-ph] CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Institute of PhysicsBelgrade UniversityBeogradSerbia
  2. 2.Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSICInstitutos de Investigación de PaternaValenciaSpain
  3. 3.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina

Personalised recommendations