Variant supercurrents and Noether procedure

Open Access


Consistent supercurrent multiplets are naturally associated with linearized off-shell supergravity models. In S.M. Kuzenko, J. High Energy Phys. 1004, 022 (2010) we presented the hierarchy of such supercurrents which correspond to all the models for linearized 4D \(\mathcal{N}=1\) supergravity classified a few years ago. Here we analyze the correspondence between the most general supercurrent given in S.M. Kuzenko, J. High Energy Phys. 1004, 022 (2010) and the one obtained eight years ago in M. Magro et al., Ann. Phys. 298, 123 (2002) using the superfield Noether procedure. We apply the Noether procedure to the general \(\mathcal{N}=1\) supersymmetric nonlinear sigma-model and show that it naturally leads to the so-called \(\mathcal{S}\)-multiplet, revitalized in Z. Komargodski, N. Seiberg, J. High Energy Phys. 1007, 017 (2010).


High Energy Phys Superconformal Symmetry Minimal Supergravity Massless Gauge Chiral Scalar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z. Komargodski, N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity. J. High Energy Phys. 1007, 017 (2010). arXiv:1002.2228 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    S.M. Kuzenko, Variant supercurrent multiplets. J. High Energy Phys. 1004, 022 (2010). arXiv:1002.4932 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    S.J. Gates Jr., S.M. Kuzenko, J. Phillips, The off-shell (3/2,2) supermultiplets revisited. Phys. Lett. B 576, 97 (2003). arXiv:hep-th/0306288 MATHCrossRefADSGoogle Scholar
  4. 4.
    S. Ferrara, B. Zumino, Transformation properties of the supercurrent. Nucl. Phys. B 87, 207 (1975) CrossRefADSGoogle Scholar
  5. 5.
    J. Wess, B. Zumino, Superfield Lagrangian for supergravity. Phys. Lett. B 74, 51 (1978) CrossRefADSGoogle Scholar
  6. 6.
    K.S. Stelle, P.C. West, Minimal auxiliary fields for supergravity. Phys. Lett. B 74, 330 (1978) CrossRefADSGoogle Scholar
  7. 7.
    S. Ferrara, P. van Nieuwenhuizen, The auxiliary fields of supergravity. Phys. Lett. B 74, 333 (1978) CrossRefADSGoogle Scholar
  8. 8.
    V.P. Akulov, D.V. Volkov, V.A. Soroka, Generally covariant theories of gauge fields on superspace. Theor. Math. Phys. 31, 285 (1977) CrossRefMathSciNetGoogle Scholar
  9. 9.
    M.F. Sohnius, P.C. West, An alternative minimal off-shell version of N=1 supergravity. Phys. Lett. B 105, 353 (1981) CrossRefADSGoogle Scholar
  10. 10.
    S.P. Bedding, W. Lang, Linearized superfield formulation of the new minimal N=1 supergravity. Nucl. Phys. B 196, 532 (1982) CrossRefADSGoogle Scholar
  11. 11.
    P.S. Howe, K.S. Stelle, P.K. Townsend, The vanishing volume of N=1 superspace. Phys. Lett. B 107, 420 (1981) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    S.J. Gates Jr., M. Roček, W. Siegel, Solution to constraints for n=0 supergravity. Nucl. Phys. B 198, 113 (1982) CrossRefADSGoogle Scholar
  13. 13.
    I.L. Buchbinder, S.J. Gates Jr., W.D. Linch, J. Phillips, New 4D, N=1 superfield theory: Model of free massive superspin-3/2 multiplet. Phys. Lett. B 535, 280 (2002). arXiv:hep-th/0201096 CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    G. Girardi, R. Grimm, M. Müller, J. Wess, Antisymmetric tensor gauge potential in curved superspace and a (16+16) supergravity multiplet. Phys. Lett. B 147, 81 (1984) CrossRefADSGoogle Scholar
  15. 15.
    W. Lang, J. Louis, B.A. Ovrut, (16+16) supergravity coupled to matter: The low-energy limit of the superstring. Phys. Lett. B 158, 40 (1985) CrossRefADSGoogle Scholar
  16. 16.
    W. Siegel, 16/16 supergravity. Class. Quantum Gravity 3, L47 (1986) CrossRefADSGoogle Scholar
  17. 17.
    P. Breitenlohner, Some invariant Lagrangians for local supersymmetry. Nucl. Phys. B 124, 500 (1977) CrossRefADSGoogle Scholar
  18. 18.
    W. Siegel, S.J. Gates Jr., Superfield supergravity. Nucl. Phys. B 147, 77 (1979) CrossRefADSGoogle Scholar
  19. 19.
    M. Magro, I. Sachs, S. Wolf, Superfield Noether procedure. Ann. Phys. 298, 123 (2002). arXiv:hep-th/0110131 MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    H. Osborn, N=1 superconformal symmetry in four-dimensional quantum field theory. Ann. Phys. 272, 243 (1999). arXiv:hep-th/9808041 MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    K.-I. Shizuya, Supercurrents and superconformal symmetry. Phys. Rev. D 35, 1848 (1987) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Z. Komargodski, N. Seiberg, Comments on the Fayet–Iliopoulos term in field theory and supergravity. J. High Energy Phys. 0906, 007 (2009). arXiv:0904.1159 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    K.R. Dienes, B. Thomas, On the inconsistency of Fayet–Iliopoulos terms in supergravity theories. Phys. Rev. D 81, 065023 (2010) CrossRefADSGoogle Scholar
  24. 24.
    S.M. Kuzenko, The Fayet–Iliopoulos term and nonlinear self-duality. Phys. Rev. D 81, 085036 (2010). arXiv:0911.5190 [hep-th] CrossRefADSGoogle Scholar
  25. 25.
    B. Zumino, Supersymmetry and Kähler manifolds. Phys. Lett. B 87, 203 (1979) CrossRefADSGoogle Scholar
  26. 26.
    S.J. Gates Jr., M.T. Grisaru, M. Roček, W. Siegel, Superspace, or One Thousand and One Lessons in Supersymmetry (Benjamin/Cummings, Reading, MA, 1983). hep-th/0108200 Google Scholar
  27. 27.
    I.L. Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace (IOP, Bristol, 1998) MATHGoogle Scholar
  28. 28.
    E. Witten, J. Bagger, Quantization of Newton’s constant in certain supergravity theories. Phys. Lett. B 115, 202 (1982) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    S.M. Kuzenko, A.G. Sibiryakov, V.V. Postnikov, Massless gauge superfields of higher half integer superspins. JETP Lett. 57, 534 (1993) [Pis’ma Zh. Eksp. Teor. Fiz. 57 (1993) 521] ADSGoogle Scholar
  30. 30.
    S.M. Kuzenko, A.G. Sibiryakov, Massless gauge superfields of higher integer superspins. JETP Lett. 57, 539 (1993) [Pis’ma Zh. Eksp. Teor. Fiz. 57, 526 (1993)] ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.School of Physics M013The University of Western AustraliaCrawley W.A.Australia

Personalised recommendations