The European Physical Journal C

, Volume 69, Issue 1–2, pp 289–292 | Cite as

Area spectra of near extremal black holes

Regular Article - Theoretical Physics

Abstract

Motivated by Maggiore’s new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild–de Sitter black hole and a higher-dimensional near extremal Reissner–Nordstrom–de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes.

Keywords

Black Hole Event Horizon Quasinormal Mode Extremal Black Hole Horizon Area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974) CrossRefADSGoogle Scholar
  2. 2.
    M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008). arXiv:0711.3145 [gr-qc] CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    K.D. Kokkotas, B.G. Schmidt, Living Rev. Relativ. 2, 2 (1999) MathSciNetADSGoogle Scholar
  4. 4.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) MATHMathSciNetGoogle Scholar
  5. 5.
    R.A. Konoplya, Phys. Rev. D 66, 044009 (2002) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    S. Hod, Phys. Rev. Lett. 81, 4293 (1998). arXiv:gr-qc/9812002 MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003). arXiv:gr-qc/0211076 CrossRefADSGoogle Scholar
  8. 8.
    G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003). arXiv:gr-qc/0212014 CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    J. Natario, R. Schiappa, Adv. Theor. Math. Phys. 8, 1001 (2004). arXiv:hep-th/0411267 MATHMathSciNetGoogle Scholar
  10. 10.
    M. Lepe, J. Saavedra, Phys. Lett. B 617, 174 (2005). arXiv:gr-qc/0410074 MathSciNetADSGoogle Scholar
  11. 11.
    R.A. Konoplya, A. Zhidenko, Nucl. Phys. B 777, 182 (2007). arXiv:hep-th/0703231 MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    L. Motl, A. Neitzke, Adv. Theor. Math. Phys. 7, 307 (2003) MathSciNetGoogle Scholar
  13. 13.
    E.C. Vagenas, J. High Energy Phys. 0811, 073 (2008). arXiv:0804.3264 [gr-qc] MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    A.J.M. Medved, Class. Quantum Gravity 25, 205014 (2008). arXiv:0804.4346 [gr-qc] CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    A.J.M. Medved, Mod. Phys. Lett. A 24, 2601–2609 (2009). arXiv:0906.2641 [gr-qc] MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    D. Kothawala, T. Padmanabhan, S. Sarkar, Phys. Rev. D 78, 104018 (2008). arXiv:0807.1481 [gr-qc] MathSciNetADSGoogle Scholar
  17. 17.
    R.G. Daghigh, M.D. Green, Class. Quantum Gravity 26, 125017 (2009). arXiv:0808.1596 [gr-qc] CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    S.W. Wei, R. Li, Y.X. Liu, J.R. Ren, J. High Energy Phys. 0903, 076 (2009). arXiv:0901.0587 [hep-th] MathSciNetGoogle Scholar
  19. 19.
    S.W. Wei, Y.X. Liu, Area spectrum of the large AdS black hole from quasinormal modes. arXiv:0906.0908 [hep-th]
  20. 20.
    S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Entropy/area spectra of the charged black hole from quasinormal modes. arXiv:1002.1553 [hep-th]
  21. 21.
    S. Fernando, Phys. Rev. D 79, 124026 (2009). arXiv:0903.0088 [hep-th] MathSciNetADSGoogle Scholar
  22. 22.
    K. Ropotenko, Phys. Rev. D 80, 044022 (2009). arXiv:0906.1949 [gr-qc] MathSciNetADSGoogle Scholar
  23. 23.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010). arXiv:0907.4271 [hep-th] ADSGoogle Scholar
  24. 24.
    A. Lopez-Ortega, Phys. Lett. B 682, 85 (2009). arXiv:0910.5779 [gr-qc] MathSciNetADSGoogle Scholar
  25. 25.
    A. Lopez-Ortega, Area spectrum of the d-dimensional Reissner–Nordstrom black hole in the small charge limit. arXiv:1003.4248 [gr-qc]
  26. 26.
    Y.S. Myung, Area spectrum of slowly rotating black holes. arXiv:1003.3519 [hep-th]
  27. 27.
    S.W. Wei, Y.X. Liu, Z.H. Zhao, C.E. Fu, arXiv:1004.2005 [hep-th]
  28. 28.
    Y. Kwon, S. Nam, Area spectra of the rotating BTZ black hole from quasinormal modes. arXiv:1001.5106 [hep-th]
  29. 29.
    Y. Kwon, S. Nam, Area spectra versus entropy spectra in black holes in topologically massive gravity. arXiv:1002.0911 [hep-th]
  30. 30.
    P. Gonzalez, E. Papantonopoulos, J. Saavedra, Quasi-normal modes of scalar perturbations, mass and area spectrum of Chern-Simons black holes. arXiv:1003.1381 [hep-th]
  31. 31.
    M.R. Setare, Phys. Rev. D 69, 044016 (2004). arXiv:hep-th/0312061 MathSciNetADSGoogle Scholar
  32. 32.
    M.R. Setare, E.C. Vagenas, Mod. Phys. Lett. A 20, 1923 (2005). arXiv:hep-th/0401187 MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. arXiv:0905.2975 [gr-qc]
  34. 34.
    V. Cardoso, J.P.S. Lemos, Phys. Rev. D 67, 084020 (2003). arXiv:gr-qc/0301078 MathSciNetADSGoogle Scholar
  35. 35.
    I.G. Moss, J.P. Norman, Class. Quantum Gravity 19, 2323 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    H. Kodama, A. Ishibashi, Prog. Theor. Phys. 111, 29 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    R.A. Konoplya, A. Zhidenko, Phys. Rev. Lett. 103, 161101 (2009). arXiv:0809.2822 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    V. Cardoso, M. Lemos, M. Marques, Phys. Rev. D 80, 127502 (2009). arXiv:1001.0019 [gr-qc] ADSGoogle Scholar
  39. 39.
    W. Li, L. Xu, J. Lu, Phys. Lett. B 676, 177 (2009). arXiv:1004.2606 [astro-ph.CO] MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations