The European Physical Journal C

, Volume 67, Issue 1–2, pp 311–319 | Cite as

Discussing quantum aspects of higher-derivative 3-D gravity in the first-order formalism

  • J. A. Helayël-Neto
  • L. M. de Moraes
  • V. J. Vasquez
Regular Article - Theoretical Physics

Abstract

In this paper, we reassess the issue of deriving the propagators and identifying the spectrum of excitations associated to the vielbein and spin connection of (1+2)-D gravity in the presence of dynamical torsion, while working in the first-order formulation. A number of peculiarities is pointed out whenever the Chern–Simons term is taken into account along with a combination of bilinear terms in the torsion tensor. We present a procedure to derive the full set of propagators, based on an algebra of enlarged spin-type operators, and we discuss under which conditions the poles of the tree-level 2-point functions correspond to physical excitations that do not conflict with causality and unitarity.

Keywords

Massive Gravity Wave Operator Spin Connection Torsion Tensor Antisymmetric Part 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Andringa, E.A. Bergshoeff, M. de Roo, O. Hohm, E. Sezgin, P.K. Townsend, Class. Quantum Gravity 27, 025010 (2010) CrossRefADSGoogle Scholar
  2. 2.
    H.I. Arcos, J.G. Pereira, Int. J. Mod. Phys. D 13, 2193 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A.S. Belyaev, I.L. Shapiro, Phys. Lett. B 425, 246 (1998) CrossRefADSGoogle Scholar
  4. 4.
    E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102, 201301 (2009) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. D 79, 124042 (2009) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E. Bergshoeff, O. Hohm, P. Townsend, On massive gravitons in 2+1 dimensions. arXiv:0912.2944 [hep-th]
  7. 7.
    J.L. Boldo, L.M. de Moraes, J.A. Helayel-Neto, Class. Quantum Gravity 17, 813 (2000) MATHCrossRefADSGoogle Scholar
  8. 8.
    S.M. Carroll, G.B. Field, Phys. Rev. D 50, 3867 (1994) CrossRefADSGoogle Scholar
  9. 9.
    D.D.K. Chow, C.N. Pope, E. Sezgin, Kundt spacetimes as solutions of topologically massive gravity. arXiv:0912.3438 [hep-th]
  10. 10.
    D. Dalmazi, Phys. Rev. D 80, 085008 (2009) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    D. Dalmazi, E.L. Mendonça, J. High Energy Phys. 0909, 011 (2009) CrossRefADSGoogle Scholar
  12. 12.
    L.M. de Moraes, J.A. Helayël-Neto, C. Hernaski, B. Pereira-Dias, A.A. Vargas Paredes, V.J. Vasquez, Otoya, Work in progress Google Scholar
  13. 13.
    V. De Sabbata, M. Gasperini, Phys. Lett. A 77, 300 (1980) CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    V. de Sabbata, M. Gasperini, Introduction to Gravitation (World Scientific, Singapore, 1985) Google Scholar
  15. 15.
    S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett. 48, 975 (1982) CrossRefADSGoogle Scholar
  16. 16.
    S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982); [Erratum-ibid. 185, 406.1988 APNYA,281,409 (1988 APNYA,281,409-449.2000)] CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. Gurses, Killing vector fields in three dimensions: a method to solve massive gravity field equations. arXiv:1001.1039 [gr-qc]
  18. 18.
    R.T. Hammond, Phys. Rev. D 52, 6918 (1995) CrossRefADSGoogle Scholar
  19. 19.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Phys. Rep. 258, 1 (1995) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    F.W. Hehl, P. Von Der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod. Phys. 48, 393 (1976) CrossRefADSGoogle Scholar
  21. 21.
    C.A. Hernaski, A.A. Vargas-Paredes, J.A. Helayel-Neto, Phys. Rev. D 80, 124012 (2009) CrossRefADSGoogle Scholar
  22. 22.
    E.W. Mielke, P. Baekler, Phys. Lett. A 156, 399 (1991) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    M. Nakasone, I. Oda, Phys. Rev. D 79, 104012 (2009) CrossRefADSGoogle Scholar
  24. 24.
    M. Nakasone, I. Oda, Prog. Theor. Phys. 121, 1389 (2009) MATHCrossRefADSGoogle Scholar
  25. 25.
    F.C.P. Nunes, G.O. Pires, Phys. Lett. B 301, 339 (1993) CrossRefADSGoogle Scholar
  26. 26.
    R.J. Rivers, Nuovo Cimento 34, 387 (1964) MathSciNetGoogle Scholar
  27. 27.
    E. Sezgin, Phys. Rev. D 24, 1677 (1981) CrossRefADSGoogle Scholar
  28. 28.
    E. Sezgin, P. van Nieuwenhuizen, Phys. Rev. D 21, 3269 (1980) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    I.L. Shapiro, Mod. Phys. Lett. A 9, 729 (1994) CrossRefADSGoogle Scholar
  30. 30.
    I.L. Shapiro, Phys. Rep. 357, 113 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    P. Van Nieuwenhuizen, Nucl. Phys. B 60, 478 (1973) CrossRefADSGoogle Scholar
  32. 32.
    J. Zanelli, (Super)-gravities beyond 4 dimensions. arXiv:hep-th/0206169

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • J. A. Helayël-Neto
    • 1
  • L. M. de Moraes
    • 2
  • V. J. Vasquez
    • 3
  1. 1.CBPF, Centro Brasileiro de Pesquisas FísicasUrcaBrazil
  2. 2.Centro Federal de Educação Tecnológica Celso Suckow da FonsecaNova FriburgoBrazil
  3. 3.UFF, Universidade Federal FluminenseNiteroiBrazil

Personalised recommendations