Advertisement

The European Physical Journal C

, Volume 65, Issue 3–4, pp 395–411 | Cite as

Gauge-invariant summation of All QCD virtual gluon exchanges

  • H. M. Fried
  • Y. Gabellini
  • T. Grandou
  • Y.-M. Sheu
Regular Article - Theoretical Physics

Abstract

The interpretation of virtual gluons as ghosts in the non-linear gluonic structure of QCD permits the formulation and realization of a manifestly gauge-invariant and Lorentz covariant theory of interacting quarks/anti-quarks, for all values of coupling. The simplest example of quark/anti-quark scattering in a high-energy, quenched, eikonal model at large coupling is shown to be expressible as a set of finite, local integrals which may be evaluated numerically; and before evaluation, it is clear that the result will be dependent only on, and is damped by increasing momentum transfer, while displaying a physically-reasonable color dependence in a manner underlying the MIT Bag Model and an effective, asymptotic freedom. Similar but more complicated integrals will result from all possible gluonic-radiative corrections to this simplest eikonal model. Our results are compatible with an earlier, field-strength analysis of Reinhardt et al.

Keywords

Ghost Transverse Momentum Impact Parameter Gluon Propagator Feynman Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Fried, Y. Gabellini, Phys. Rev. D 55, 2430 (1997) CrossRefADSGoogle Scholar
  2. 2.
    H.-T. Cho, H.M. Fried, T. Grandou, Phys. Rev. D 37, 960 (1988) CrossRefADSGoogle Scholar
  3. 3.
    H.M. Fried, Y. Gabellini, J. Avan, Eur. Phys. J. C 13, 699 (2000) CrossRefADSGoogle Scholar
  4. 4.
    L.D. Faddeev, V.N. Popov, Phys. Lett. B 25, 29 (1967) CrossRefADSGoogle Scholar
  5. 5.
    H.M. Fried, Basics of Functional Methods and Eikonal Models (Editions Frontières, Gif-sur-Yvette Cedex, 1990) Google Scholar
  6. 6.
    H. Reinhardt, K. Langfeld, L.V. Smekal, Phys. Lett. B 300, 111 (1993) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    H.M. Fried, Functional Methods and Models in Quantum Field Theory (MIT Press, Cambridge, 1972) Google Scholar
  8. 8.
    J. Schwinger, Stanford Lectures (1956) Google Scholar
  9. 9.
    M.B. Halpern, Phys. Rev. D 16, 1798 (1977) CrossRefADSGoogle Scholar
  10. 10.
    M.B. Halpern, Phys. Rev. D 16, 3515 (1977) CrossRefADSGoogle Scholar
  11. 11.
    H. Cheng, T.T. Wu, Phys. Rev. 182, 1852 (1969) CrossRefADSGoogle Scholar
  12. 12.
    H. Cheng, T.T. Wu, Phys. Rev. 182, 1868 (1969) CrossRefADSGoogle Scholar
  13. 13.
    H. Cheng, T.T. Wu, Phys. Rev. 182, 1873 (1969) CrossRefADSGoogle Scholar
  14. 14.
    H. Cheng, T.T. Wu, Phys. Rev. 182, 1899 (1969) CrossRefADSGoogle Scholar
  15. 15.
    H. Cheng, T.T. Wu, Phys. Rev. D 1, 1069 (1970) CrossRefADSGoogle Scholar
  16. 16.
    H. Cheng, T.T. Wu, Phys. Rev. D 1, 1083 (1970) CrossRefADSGoogle Scholar
  17. 17.
    H. Cheng, T.T. Wu, Phys. Rev. Lett. 24, 1456 (1970) CrossRefADSGoogle Scholar
  18. 18.
    L.N. Lipatov, G.V. Frolov, Yad. Fiz. 13, 588 (1971) Google Scholar
  19. 19.
    L.N. Lipatov, G.V. Frolov, Sov. J. Nucl. Phys. 13, 333 (1971) Google Scholar
  20. 20.
    H. Cheng, T.T. Wu, Expanding Protons: Scattering at High Energies (MIT Press, Cambridge, 1987) Google Scholar
  21. 21.
    T.R. Morris, O.J. Rosten, J. Phys. A 39, 11657 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    E.S. Fradkin, Nucl. Phys. 76, 588 (1966) CrossRefMathSciNetGoogle Scholar
  23. 23.
    M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic Press, New York, 1967) MATHGoogle Scholar
  24. 24.
    T. Grandou, H.-T. Cho, H.M. Fried, Phys. Rev. D 37, 946 (1988) CrossRefADSGoogle Scholar
  25. 25.
    H.M. Fried, Phys. Rev. D 46, 5574 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • H. M. Fried
    • 1
    • 3
  • Y. Gabellini
    • 2
  • T. Grandou
    • 2
  • Y.-M. Sheu
    • 1
    • 2
  1. 1.Physics DepartmentBrown UniversityProvidenceUSA
  2. 2.Institut Non Linéaire de NiceUMR 6618 CNRSValbonneFrance
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations