Advertisement

On free 4D Abelian 2-form and anomalous 2D Abelian 1-form gauge theories

  • S. Gupta
  • R. Kumar
  • R. P. Malik
Regular Article - Theoretical Physics

Abstract

We demonstrate a few striking similarities and some glaring differences between (i) the free four- (3+1)-dimensional (4D) Abelian 2-form gauge theory, and (ii) the anomalous two- (1+1)-dimensional (2D) Abelian 1-form gauge theory, within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism. We demonstrate that the Lagrangian densities of the above two theories transform in a similar fashion under a set of symmetry transformations even though they are endowed with a drastically different variety of constraint structures. With the help of our understanding of the 4D Abelian 2-form gauge theory, we prove that the gauge-invariant version of the anomalous 2D Abelian 1-form gauge theory is a new field-theoretic model for the Hodge theory where all the de Rham cohomological operators of differential geometry find their physical realizations in the language of proper symmetry transformations. The corresponding conserved charges obey an algebra that is reminiscent of the algebra of the cohomological operators. We briefly comment on the consistency of the 2D anomalous 1-form gauge theory in the language of restrictions on the harmonic state of the (anti-) BRST and (anti-) co-BRST invariant version of the above 2D theory.

PACS

11.15.-q 03.70.+k 

References

  1. 1.
    P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science (Yeshiva University Press, New York, 1964) Google Scholar
  2. 2.
    K. Sundermeyer, Constrained Dynamics. Lecture Notes in Physics, vol. 169 (Springer, Berlin, 1982) MATHGoogle Scholar
  3. 3.
    K. Nishijima, Czechoslov. J. Phys. 46, 1 (1996) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    N. Nakanishi, I. Ojima, Covariant Operator Formalism of Gauge Theories and Quantum Gravity (World Scientific, Singapore, 1990) Google Scholar
  5. 5.
    I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics: A Practical Introduction (Hilger, Bristol, 1982) Google Scholar
  6. 6.
    V.I. Ogievetsky, I.V. Palubarinov, Yad. Fiz. 4, 216 (1966) Google Scholar
  7. 7.
    V.I. Ogievetsky, I.V. Palubarinov, Sov. J. Nucl. Phys. 4, 156 (1967) Google Scholar
  8. 8.
    A. Salam, E. Sezgin, Supergravities in Diverse Dimensions (World Scientific, Singapore, 1989) Google Scholar
  9. 9.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987) MATHGoogle Scholar
  10. 10.
    J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998) Google Scholar
  11. 11.
    N. Seiberg, E. Witten, J. High Energy Phys. 9909, 032 (1999) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    R.P. Malik, J. Phys. A, Math. Gen. 36, 5095 (2003). hep-th/0209136 MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    E. Harikumar, R.P. Malik, M. Sivakumar, J. Phys. A, Math. Gen. 33, 7149 (2000). hep-th/0004145 MATHMathSciNetGoogle Scholar
  14. 14.
    S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008). arXiv:0807.2306 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    R.P. Malik, Notoph gauge theory as the Hodge theory, in Proc. of the International Workshop on Supersymmetries and Quantum Symmetries (SQS’03), BLTP, JINR, Dubna, 24–29 July 2003, pp. 321–326. hep-th/0309245
  16. 16.
    R.K. Kaul, Phys. Rev. D 18, 1127 (1978) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    P.K. Townsend, Phys. Lett. B 88, 97 (1979) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    H. Hata, T. Kugo, N. Ohta, Nucl. Phys. B 178, 527 (1981) CrossRefADSGoogle Scholar
  19. 19.
    T. Kimura, Prog. Theor. Phys. 64, 357 (1980) CrossRefADSGoogle Scholar
  20. 20.
    R.P. Malik, Eur. Phys. J. C 60, 457 (2009). hep-th/0702039 CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    G. Curci, R. Ferrari, Phys. Lett. B 63, 91 (1976) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    L. Bonora, R.P. Malik, Phys. Lett. B 655, 75 (2007). 0707.3922 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    R. Jackiw, R. Rajaraman, Phys. Rev. Lett. 54, 1219 (1985) CrossRefADSGoogle Scholar
  24. 24.
    R. Rajaraman, Phys. Lett. B 184, 369 (1987) CrossRefADSGoogle Scholar
  25. 25.
    R.P. Malik, Phys. Lett. B 212, 445 (1988) CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    S. Gupta, R.P. Malik, arXiv:0805.1102 [hep-th]
  27. 27.
    S. Deser, A. Gomberoff, M. Henneaux, C. Teitelboim, Phys. Lett. B 400, 80 (1997) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    R.P. Malik, Int. J. Mod. Phys. A 19, 5663 (2004). hep-th/0212240 MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    R.P. Malik, Int. J. Mod. Phys. A 21, 6513 (2006). hep-th/0212240 (Errata) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    N.K. Falk, G. Kramer, Ann. Phys. 176, 330 (1987) CrossRefADSGoogle Scholar
  31. 31.
    T. Eguchi, P.B. Gilkey, A. Hanson, Phys. Rep. 66, 213 (1980) CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    S. Mukhi, N. Mukunda, Introduction to Topology, Differential Geometry and Group Theory to Physicists (Wiley, New Delhi, 1990) MATHGoogle Scholar
  33. 33.
    J.W. van Holten, Phys. Rev. Lett. 64, 2863 (1990) MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    R.P. Malik, J. Phys. A, Math. Gen. 33, 2437 (2000). hep-th/9902146 MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    R.P. Malik, Int. J. Mod. Phys. A 15, 1685 (2000). hep-th/9808040 MATHMathSciNetADSGoogle Scholar
  36. 36.
    R.P. Malik, J. Phys. A, Math. Gen. 34, 4167 (2001). hep-th/0012085 MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    R.P. Malik, Mod. Phys. Lett. A 16, 477 (2001). hep-th/9711056 CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    R.P. Malik, Mod. Phys. Lett. A 15, 2079 (2000). hep-th/0003128 MATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    S. Das, S. Ghosh, arXiv:0812.3512 [math-ph]
  40. 40.
    R. Rajaraman, Phys. Lett. B 162, 148 (1985) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    S. Gupta, R. Kumar, R.P. Malik, in preparation Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Physics Department, Centre of Advanced StudiesBanaras Hindu UniversityVaranasiIndia
  2. 2.DST Centre for Interdisciplinary Mathematical Sciences, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations