Skip to main content
Log in

Extracting hadronic viscosity from microscopic transport models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) are thought to have created a Quark–Gluon Plasma, characterized by a very small shear viscosity to entropy density ratio η/s, close to the lower bound predicted for that quantity by string theory. However, due to the dynamics of the collision, the produced matter passes through a phase characterized by an expanding and rapidly cooling hadron gas with strongly increasing η/s. Such a rise in η/s would not be compatible with the success of (viscous) hydrodynamics, which requires a very small value of η/s throughout the full evolution of the reaction in order to successfully describe the collective flow seen in the experiments. Here we show that the inclusion of a pion-chemical potential, which is bound to arise due to the separation of chemical and kinetic freeze-out during the collision evolution, will reduce the value of η/s, and argue that introduction of other chemical potentials could ensure the successful application of (viscous) hydrodynamics to collisions at RHIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Adcox (PHENIX). Nucl. Phys. A 757, 184 (2005). nucl-ex/0410003

    Article  ADS  Google Scholar 

  2. B.B. Back , Nucl. Phys. A 757, 28 (2005). nucl-ex/0410022

    Article  ADS  Google Scholar 

  3. I. Arsene (BRAHMS). Nucl. Phys. A 757, 1 (2005). nucl-ex/0410020

    Article  ADS  Google Scholar 

  4. J. Adams (STAR). Nucl. Phys. A 757, 102 (2005). nucl-ex/0501009

    Article  ADS  Google Scholar 

  5. P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985)

    Article  ADS  Google Scholar 

  6. G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001). hep-th/0104066

    Article  ADS  Google Scholar 

  7. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). hep-th/0405231

    Article  ADS  Google Scholar 

  8. H. Song, U.W. Heinz, arXiv:0709.0742 [nucl-th] (2007)

  9. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). 0706.1522

    Article  ADS  Google Scholar 

  10. M. Luzum, P. Romatschke, arXiv:0804.4015 (2008)

  11. K. Dusling, D. Teaney, arXiv:0710.5932 [nucl-th] (2007)

  12. K. Tsumura, T. Kunihiro, arXiv:0709.3645 [nucl-th] (2007)

  13. D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 730, 448 (2004). hep-ph/0212316

    Article  ADS  Google Scholar 

  14. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994). hep-ph/9309289

    Article  ADS  Google Scholar 

  15. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 3352 (1994). hep-ph/9311205

    Article  ADS  Google Scholar 

  16. J.W. Chen, M. Huang, Y.H. Li, E. Nakano, D.L. Yang, arXiv:0709.3434 (2007)

  17. L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006). nucl-th/0604032

    Article  ADS  Google Scholar 

  18. S.A. Bass, A. Dumitru, Phys. Rev. C 61, 064909 (2000). nucl-th/0001033

    Article  ADS  Google Scholar 

  19. T. Hirano, K. Tsuda, Nucl. Phys. A 715, 821 (2003). nucl-th/0208068

    Article  ADS  Google Scholar 

  20. P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003). hep-ph/0210222

    Article  ADS  Google Scholar 

  21. C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007). nucl-th/0607018

    Article  ADS  Google Scholar 

  22. S. Gavin, Nucl. Phys. A 435, 826 (1985)

    Article  ADS  Google Scholar 

  23. A. Dobado, S.N. Santalla, Phys. Rev. D 65, 096011 (2002). hep-ph/0112299

    Article  ADS  Google Scholar 

  24. M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993)

    Article  ADS  Google Scholar 

  25. J.W. Chen, E. Nakano, Phys. Lett. B 647, 371 (2007). hep-ph/0604138

    Article  ADS  Google Scholar 

  26. J.W. Chen, Y.H. Li, Y.F. Liu, E. Nakano, hep-ph/0703230 (2007)

  27. K. Itakura, O. Morimatsu, H. Otomo, arXiv:0711.1034 [hep-ph] (2007)

  28. M. Belkacem , Phys. Rev. C 58, 1727 (1998). nucl-th/9804058

    Article  ADS  Google Scholar 

  29. A. Muronga, Phys. Rev. C 69, 044901 (2004). nucl-th/0309056

    Article  ADS  Google Scholar 

  30. S. Muroya, N. Sasaki, Prog. Theor. Phys. 113, 457 (2005). nucl-th/0408055

    Article  ADS  Google Scholar 

  31. S.A. Bass , Prog. Part. Nucl. Phys. 41, 225 (1998). nucl-th/9803035

    Article  ADS  Google Scholar 

  32. M. Bleicher , J. Phys. G 25, 1859 (1999). hep-ph/9909407

    Article  ADS  Google Scholar 

  33. G. Torrieri , Comput. Phys. Commun. 167, 229 (2005). nucl-th/0404083

    Article  ADS  Google Scholar 

  34. G. Torrieri, S. Jeon, J. Letessier, J. Rafelski, Comput. Phys. Commun. 175, 635 (2006). nucl-th/0603026

    Article  ADS  Google Scholar 

  35. A. Hosoya, M.A. Sakagami, M. Takao, Ann. Phys. 154, 229 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Paech, S. Pratt, Phys. Rev. C 74, 014901 (2006). nucl-th/0604008

    Article  ADS  Google Scholar 

  37. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  38. P. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 05, 051 (2003). hep-ph/0302165

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001). hep-ph/0105229

    Article  ADS  Google Scholar 

  40. P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004). nucl-th/0311005

    Article  ADS  Google Scholar 

  41. P.F. Kolb, U.W. Heinz, nucl-th/0305084 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Demir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demir, N., Bass, S.A. Extracting hadronic viscosity from microscopic transport models. Eur. Phys. J. C 62, 63–68 (2009). https://doi.org/10.1140/epjc/s10052-009-1000-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1000-8

PACS

Navigation