The European Physical Journal C

, Volume 62, Issue 1, pp 191–196 | Cite as

Identification and rejection of fake reconstructed jets from a fluctuating heavy ion background in ATLAS

  • on behalf of the ATLAS Collaboration
  • N. Grau
Open Access
Regular Article - Experimental Physics


Full jet reconstruction in relativistic heavy ion collisions provides new and unique insights to the physics of parton energy loss. Because of the large underlying event multiplicity in A+A collisions, random and correlated fluctuations in the background can result in the reconstruction of fake jets. These fake jets must be identified and rejected to obtain the purest jet sample possible. A large but reducible fake rate of jets reconstructed using an iterative cone algorithm on HIJING events is observed. The absolute rate of fake jets exceeds the binary-scaled p+p jet rate below 50 GeV and is not negligible until 100 GeV. The variable Σj T , the sum of the jet constituent’s E T perpendicular to the jet axis, is introduced to identify and reject fake jets at by a factor of 100 making it negligible. This variable is shown to not strongly depend on jet energy profiles modified by energy loss. By studying azimuthal correlations of reconstructed di-jets, the fake jet rate can be evaluated in data.


Large Hadron Collider Atlas Collaboration Atlas Detector Azimuthal Correlation Parton Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Adcox (PHENIX Collaboration), Phys. Rev. Lett. 88, 022301 (2002) CrossRefADSGoogle Scholar
  2. 2.
    B.B. Back (PHOBOS Collaboration), Phys. Rev. C 65, 061901 (2002) CrossRefADSGoogle Scholar
  3. 3.
    J. Putschke (STAR Collaboration), arXiv:0809.1419 [nucl-ex]
  4. 4.
    Y.S. Lai, B.A. Cole, arXiv:0806.1499 [nucl-ex]
  5. 5.
    C. Adler (STAR Collaboration), Phys. Rev. Lett. 90, 082302 (2003) CrossRefADSGoogle Scholar
  6. 6.
    J. Adams (STAR Collaboration), Phys. Rev. Lett. 97, 162301 (2006) CrossRefADSGoogle Scholar
  7. 7.
    N. Armesto, L. Cunqueiro, C. Salgado, J. High Energy Phys. 2, 48 (2008) CrossRefADSGoogle Scholar
  8. 8.
    R. Baier , Nucl. Phys. B 484, 265 (1997) CrossRefADSGoogle Scholar
  9. 9.
    A. Dainese, C. Loizides, G. Paic, Eur. Phys. J. C 38, 461 (2005) CrossRefADSGoogle Scholar
  10. 10.
    C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 93, 042301 (2004) CrossRefADSGoogle Scholar
  11. 11.
    D.E. Kharzeev, arXiv:0806.0358 [hep-ph]
  12. 12.
    I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, C.Y. Teplov, PoS LHC07, 003 (2007) Google Scholar
  13. 13.
    A. Accardi, N. Armesto, I.P. Lokhtin, hep-ph/0211314 (2002)
  14. 14.
    N. Grau (ATLAS Collaboration), J. Phys. G 35, 104040 (2008) CrossRefADSGoogle Scholar
  15. 15.
    ATLAS Collaboration, ATLAS Technical Design Report, vol. 1, CERN-LHCC-99-14, 1999 Google Scholar
  16. 16.
    ATLAS Collaboration, ATLAS Technical Design Report, vol. 2, CERN-LHCC-99-15, 1999 Google Scholar
  17. 17.
    ATLAS Collaboration, Heavy Ion Physics with the ATLAS Detector, CERN-LHCC-2004-009 I-013, 2004 Google Scholar
  18. 18.
    T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006) CrossRefADSGoogle Scholar
  19. 19.
    M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1984) CrossRefADSGoogle Scholar
  20. 20.
    G. Sterman, S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977) CrossRefADSGoogle Scholar
  21. 21.
    R. Akers (OPAL Collaboration), Z. Phys. C 63, 197 (1994) CrossRefADSGoogle Scholar
  22. 22.
    I. Vitev, arXiv:0806.0003 [hep-ph]
  23. 23.
    I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 46, 211 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations