Skip to main content
Log in

Stirring strongly coupled plasma

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We determine the energy it takes to move a test quark along a circle of radius L with angular frequency ω through the strongly coupled plasma of \(\mathcal{N}=4\) supersymmetric Yang–Mills (SYM) theory. We find that for most values of L and ω the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=L ω or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime (ωπ T(1−v 2)3/4, meaning ωπ T and L small enough) to the radiation-dominated regime (ωπ T(1−v 2)3/4). In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implications of our results for a quark that is moving through the plasma in a straight line while decelerating, although in this case the classical calculation breaks down at the same value of the deceleration as the one at which the radiation-dominated regime sets in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Baier, D. Schiff, B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000). arXiv:hep-ph/0002198

    Article  ADS  Google Scholar 

  2. R. Baier, Nucl. Phys. A 715, 209 (2003). arXiv:hep-ph/0209038

    Article  ADS  Google Scholar 

  3. A. Kovner, U.A. Wiedemann, arXiv:hep-ph/0304151

  4. M. Gyulassy, I. Vitev, X.N. Wang, B.W. Zhang, arXiv:nucl-th/0302077

  5. P. Jacobs, X.N. Wang, Prog. Part. Nucl. Phys. 54, 443 (2005). arXiv:hep-ph/0405125

    Article  ADS  Google Scholar 

  6. J. Casalderrey-Solana, C.A. Salgado, arXiv:0712.3443 [hep-ph]

  7. K. Adcox (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005). arXiv:nucl-ex/0410003

    Article  ADS  Google Scholar 

  8. B.B. Back (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005). arXiv:nucl-ex/0410022

    Article  ADS  Google Scholar 

  9. I. Arsene (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005). arXiv:nucl-ex/0410020

    Article  ADS  Google Scholar 

  10. J. Adams (STAR Collaboration), Nucl. Phys. A 757, 102 (2005). arXiv:nucl-ex/0501009

    Article  ADS  Google Scholar 

  11. F. Carminati (ALICE Collaboration), J. Phys. G 30, 1517 (2004)

    Article  ADS  Google Scholar 

  12. B. Alessandro (ALICE Collaboration), J. Phys. G 32, 1295 (2006)

    Article  ADS  Google Scholar 

  13. D. d’Enterria (CMS Collaboration), J. Phys. G 34, 2307 (2007)

    Article  ADS  Google Scholar 

  14. H. Takai (for the ATLAS Collaboration), Eur. Phys. J. C 34, S307 (2004)

    Article  Google Scholar 

  15. J. Casalderrey-Solana, E.V. Shuryak, D. Teaney, J. Phys. Conf. Ser. 27, 22 (2005)

    Article  ADS  Google Scholar 

  16. J. Casalderrey-Solana, E.V. Shuryak, D. Teaney, Nucl. Phys. A 774, 577 (2006). arXiv:hep-ph/0411315

    Article  ADS  Google Scholar 

  17. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

    MATH  ADS  MathSciNet  Google Scholar 

  18. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999). arXiv:hep-th/9711200

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    MATH  MathSciNet  Google Scholar 

  20. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000). arXiv:hep-th/9905111

    Article  ADS  MathSciNet  Google Scholar 

  22. B.G. Zakharov, JETP Lett. 65, 615 (1997). arXiv:hep-ph/9704255

    Article  ADS  Google Scholar 

  23. U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000). arXiv:hep-ph/0005129

    Article  ADS  Google Scholar 

  24. H. Liu, K. Rajagopal, U.A. Wiedemann, Phys. Rev. Lett. 97, 182301 (2006). arXiv:hep-ph/0605178

    Article  ADS  Google Scholar 

  25. H. Liu, K. Rajagopal, U.A. Wiedemann, J. High Energy Phys. 0703, 066 (2007). arXiv:hep-ph/0612168

    Article  ADS  Google Scholar 

  26. Y. Hatta, E. Iancu, A.H. Mueller, J. High Energy Phys. 0801, 063 (2008). arXiv:0710.5297 [hep-th]

    Article  ADS  Google Scholar 

  27. D.M. Hofman, J. Maldacena, J. High Energy Phys. 0805, 012 (2008). arXiv:0803.1467 [hep-th]

    Article  ADS  Google Scholar 

  28. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L.G. Yaffe, J. High Energy Phys. 0607, 013 (2006). arXiv:hep-th/0605158

    Article  ADS  MathSciNet  Google Scholar 

  29. S.S. Gubser, Phys. Rev. D 74, 126005 (2006). arXiv:hep-th/0605182

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Casalderrey-Solana, D. Teaney, J. High Energy Phys. 0704, 039 (2007). arXiv:hep-th/0701123

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Casalderrey-Solana, D. Teaney, Phys. Rev. D 74, 085012 (2006). arXiv:hep-ph/0605199

    Article  ADS  Google Scholar 

  32. S.S. Gubser, Nucl. Phys. B 790, 175 (2008). arXiv:hep-th/0612143

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. K. Peeters, J. Sonnenschein, M. Zamaklar, Phys. Rev. D 74, 106008 (2006). arXiv:hep-th/0606195

    Article  ADS  Google Scholar 

  34. P. Burikham, J. Li, J. High Energy Phys. 0703, 067 (2007). arXiv:hep-ph/0701259

    Article  ADS  Google Scholar 

  35. O. Antipin, P. Burikham, J. Li, J. High Energy Phys. 0706, 046 (2007). arXiv:hep-ph/0703105

    Article  ADS  Google Scholar 

  36. F. Dominguez, C. Marquet, A.H. Mueller, B. Wu, B.W. Xiao, arXiv:0803.3234 [nucl-th]

  37. A. Mikhailov, arXiv:hep-th/0305196

  38. A. Liénard, Éclairage Électr. 16, 5 (1898)

    Google Scholar 

  39. J.J. Friess, S.S. Gubser, G. Michalogiorgakis, S.S. Pufu, Phys. Rev. D 75, 106003 (2007). arXiv:hep-th/0607022

    Article  ADS  Google Scholar 

  40. S.S. Gubser, S.S. Pufu, A. Yarom, J. High Energy Phys. 0709, 108 (2007). arXiv:0706.0213 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. S.S. Gubser, S.S. Pufu, A. Yarom, Phys. Rev. Lett. 100, 012301 (2008). arXiv:0706.4307 [hep-th]

    Article  ADS  Google Scholar 

  42. P.M. Chesler, L.G. Yaffe, Phys. Rev. Lett. 99, 152001 (2007). arXiv:0706.0368 [hep-th]

    Article  ADS  Google Scholar 

  43. P.M. Chesler, L.G. Yaffe, arXiv:0712.0050 [hep-th]

  44. A. Karch, E. Katz, J. High Energy Phys. 0206, 043 (2002). arXiv:hep-th/0205236

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Chernicoff, A. Guijosa, J. High Energy Phys. 0806, 005 (2008). arXiv:0803.3070 [hep-th]

    Article  ADS  Google Scholar 

  46. G.D. Moore, D. Teaney, Phys. Rev. C 71, 064904 (2005). arXiv:hep-ph/0412346

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Achim Wiedemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadafan, K.B., Liu, H., Rajagopal, K. et al. Stirring strongly coupled plasma. Eur. Phys. J. C 61, 553–567 (2009). https://doi.org/10.1140/epjc/s10052-009-0885-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0885-6

Keywords

Navigation