Skip to main content
Log in

Parton energy loss at strong coupling and the universal bound

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The apparent universality of jet quenching observed in heavy-ion collisions at RHIC for light and heavy quarks, as well as for quarks and gluons, is very puzzling and calls for a theoretical explanation. Recently, it has been proposed that synchrotron-like radiation at strong coupling gives rise to a universal bound on the energy of a parton escaping from the medium. Since this bound appears to be quite low, almost all of the observed particles at high transverse momentum have to originate from the surface of the hot fireball. Here I make a first attempt of checking this scenario against the RHIC data and formulate a “universal-bound model” of jet quenching that can be further tested at RHIC and LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005). arXiv:nucl-ex/0410020

    Article  ADS  Google Scholar 

  2. K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005). arXiv:nucl-ex/0410003

    Article  ADS  Google Scholar 

  3. B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005). arXiv:nucl-ex/0410022

    Article  ADS  Google Scholar 

  4. J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005). arXiv:nucl-ex/0501009

    Article  ADS  Google Scholar 

  5. J.D. Bjorken, FERMILAB-PUB-82-059-THY, 1982

  6. M. Gyulassy, X.n. Wang, Nucl. Phys. B 420, 583 (1994). arXiv:nucl-th/9306003

    Article  ADS  Google Scholar 

  7. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 483, 291 (1997). arXiv:hep-ph/9607355

    Article  ADS  Google Scholar 

  8. R. Baier, D. Schiff, B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000). arXiv:hep-ph/0002198

    Article  ADS  Google Scholar 

  9. M. Gyulassy, I. Vitev, X.N. Wang, B.W. Zhang, arXiv:nucl-th/0302077

  10. Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001). arXiv:hep-ph/0106202

    Article  ADS  Google Scholar 

  11. N. Armesto, A. Dainese, C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 71, 054027 (2005). arXiv:hep-ph/0501225

    Article  ADS  Google Scholar 

  12. M. Djordjevic, M. Gyulassy, S. Wicks, Phys. Rev. Lett. 94, 112301 (2005). arXiv:hep-ph/0410372

    Article  ADS  Google Scholar 

  13. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 98, 192301 (2007). arXiv:nucl-ex/0607012

    Article  ADS  Google Scholar 

  14. A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 172301 (2007). arXiv:nucl-ex/0611018

    Article  ADS  Google Scholar 

  15. F. Kajihara (PHENIX Collaboration), J. Phys. G 34, S763 (2007). arXiv:nucl-ex/0703003

    Article  ADS  Google Scholar 

  16. B.I. Abelev et al. (STAR Collaboration), arXiv:0805.0364 [nucl-ex]

  17. T.C. Awes (PHENIX Collaboration), arXiv:0805.1636 [nucl-ex]

  18. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

    MATH  ADS  MathSciNet  Google Scholar 

  19. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    MATH  MathSciNet  Google Scholar 

  21. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000). arXiv:hep-th/9905111

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Kharzeev, K. Tuchin, arXiv:0705.4280 [hep-ph]

  23. F. Karsch, D. Kharzeev, K. Tuchin, Phys. Lett. B 663, 217 (2008). arXiv:0711.0914 [hep-ph]

    Article  ADS  Google Scholar 

  24. H.B. Meyer, Phys. Rev. Lett. 100, 162001 (2008). arXiv:0710.3717 [hep-lat]

    Article  ADS  Google Scholar 

  25. P. Benincasa, A. Buchel, A.O. Starinets, Nucl. Phys. B 733, 160 (2006). arXiv:hep-th/0507026

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. Buchel, Phys. Lett. B 663, 286 (2008). arXiv:0708.3459 [hep-th]

    Article  ADS  Google Scholar 

  27. S.S. Gubser, A. Nellore, S.S. Pufu, F.D. Rocha, arXiv:0804.1950 [hep-th]

  28. G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001). arXiv:hep-th/0104066

    Article  ADS  Google Scholar 

  29. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  30. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L.G. Yaffe, J. High Energy Phys. 0607, 013 (2006). arXiv:hep-th/0605158

    Article  ADS  MathSciNet  Google Scholar 

  31. S.S. Gubser, Phys. Rev. D 74, 126005 (2006). arXiv:hep-th/0605182

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Casalderrey-Solana, D. Teaney, Phys. Rev. D 74, 085012 (2006). arXiv:hep-ph/0605199

    Article  ADS  Google Scholar 

  33. W.A. Horowitz, M. Gyulassy, arXiv:0804.4330 [hep-ph]

  34. H. Liu, K. Rajagopal, U.A. Wiedemann, Phys. Rev. Lett. 97, 182301 (2006). arXiv:hep-ph/0605178

    Article  ADS  Google Scholar 

  35. M. Chernicoff, J.A. Garcia, A. Guijosa, J. High Energy Phys. 0609, 068 (2006). arXiv:hep-th/0607089

    Article  ADS  MathSciNet  Google Scholar 

  36. P.C. Argyres, M. Edalati, J.F. Vazquez-Poritz, J. High Energy Phys. 0704, 049 (2007). arXiv:hep-th/0612157

    Article  ADS  Google Scholar 

  37. F. Dominguez, C. Marquet, A.H. Mueller, B. Wu, B.W. Xiao, arXiv:0803.3234 [nucl-th]

  38. Y. Hatta, E. Iancu, A.H. Mueller, J. High Energy Phys. 0805, 037 (2008). arXiv:0803.2481 [hep-th]

    Article  ADS  Google Scholar 

  39. A.H. Mueller, arXiv:0805.3140 [hep-ph]

  40. D.E. Kharzeev, arXiv:0806.0358 [hep-ph]

  41. A. Mikhailov, arXiv:hep-th/0305196

  42. A. Liénard, Éclairage Électr. 16, 5 (1898)

    Google Scholar 

  43. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975)

    Google Scholar 

  44. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  45. G. Mandal, N.V. Suryanarayana, S.R. Wadia, Phys. Lett. B 543, 81 (2002). arXiv:hep-th/0206103

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. I. Bena, J. Polchinski, R. Roiban, Phys. Rev. D 69, 046002 (2004). arXiv:hep-th/0305116

    Article  ADS  MathSciNet  Google Scholar 

  47. G. ’t Hooft, Nucl. Phys. B 190, 455 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  48. C.P. Korthals Altes, arXiv:hep-ph/0607154

  49. E. Shuryak, arXiv:hep-ph/0703208

  50. S.J. Sin, I. Zahed, Phys. Lett. B 608, 265 (2005). arXiv:hep-th/0407215

    Article  ADS  Google Scholar 

  51. M. Chernicoff, A. Guijosa, arXiv:0803.3070 [hep-th]

  52. M. Born, L. Infeld, Nature 132, 1004 (1933)

    Article  MATH  ADS  Google Scholar 

  53. V.N. Gribov, Eur. Phys. J. C 10, 91 (1999). arXiv:hep-ph/9902279

    ADS  Google Scholar 

  54. Y.L. Dokshitzer, D.E. Kharzeev, Ann. Rev. Nucl. Part. Sci. 54, 487 (2004). arXiv:hep-ph/0404216

    Article  ADS  Google Scholar 

  55. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005). arXiv:hep-ph/0501234

    Article  ADS  Google Scholar 

  56. D. Kharzeev, E. Levin, K. Tuchin, Phys. Rev. C 75, 044903 (2007). arXiv:hep-ph/0602063

    Article  ADS  Google Scholar 

  57. T. Lappi, L. McLerran, Nucl. Phys. A 772, 200 (2006). arXiv:hep-ph/0602189

    Article  ADS  Google Scholar 

  58. R.J. Fries, J.I. Kapusta, Y. Li, arXiv:nucl-th/0604054

  59. A. Iwazaki, Phys. Rev. C 77, 034907 (2008). arXiv:0712.1405 [hep-ph]

    Article  ADS  Google Scholar 

  60. H. Fujii, K. Itakura, arXiv:0803.0410 [hep-ph]

  61. A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, arXiv:0804.3858 [hep-ph]

  62. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)

    Article  ADS  Google Scholar 

  63. J.P. Blaizot, A.H. Mueller, Nucl. Phys. B 289, 847 (1987)

    Article  ADS  Google Scholar 

  64. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994). arXiv:hep-ph/9309289

    Article  ADS  Google Scholar 

  65. L.D. McLerran, R. Venugopalan, Phys. Rev. D 50, 2225 (1994). arXiv:hep-ph/9402335

    Article  ADS  Google Scholar 

  66. D.E. Kharzeev, Y.V. Kovchegov, E. Levin, Nucl. Phys. A 690, 621 (2001). arXiv:hep-ph/0007182

    Article  ADS  Google Scholar 

  67. E.V. Shuryak, Phys. Lett. B 515, 359 (2001). arXiv:hep-ph/0101269

    Article  ADS  Google Scholar 

  68. D.E. Kharzeev, Y.V. Kovchegov, E. Levin, Nucl. Phys. A 699, 745 (2002). arXiv:hep-ph/0106248

    Article  MATH  ADS  Google Scholar 

  69. R.A. Janik, E. Shuryak, I. Zahed, Phys. Rev. D 67, 014005 (2003). arXiv:hep-ph/0206005

    Article  ADS  Google Scholar 

  70. D. Kharzeev, A. Krasnitz, R. Venugopalan, Phys. Lett. B 545, 298 (2002). arXiv:hep-ph/0109253

    Article  MATH  ADS  Google Scholar 

  71. D. Kharzeev, R.D. Pisarski, M.H.G. Tytgat, Phys. Rev. Lett. 81, 512 (1998). arXiv:hep-ph/9804221

    Article  ADS  Google Scholar 

  72. T.D. Lee, Phys. Rev. D 8, 1226 (1973)

    Article  ADS  Google Scholar 

  73. P.D. Morley, I.A. Schmidt, Z. Phys. C 26, 627 (1985)

    Article  ADS  Google Scholar 

  74. D. Kharzeev, Phys. Lett. B 633, 260 (2006). arXiv:hep-ph/0406125

    Article  ADS  Google Scholar 

  75. D. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007). arXiv:0706.1026 [hep-ph]

    ADS  Google Scholar 

  76. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  77. H.J. Warringa, arXiv:0805.1384 [hep-ph]

  78. S.A. Voloshin, arXiv:0805.1351 [nucl-ex]

  79. E.V. Shuryak, I. Zahed, Phys. Rev. D 67, 054025 (2003). arXiv:hep-ph/0207163

    Article  ADS  Google Scholar 

  80. J. Schwinger, Phys. Rev. 75, 1912 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  81. B.G. Zakharov, arXiv:0809.0599 [hep-ph]

  82. I.Ya. Pomeranchuk, J. Phys. II, 65 (1940)

    Google Scholar 

  83. D. Kharzeev, K. Tuchin, Nucl. Phys. A 735, 248 (2004). arXiv:hep-ph/0310358

    Article  ADS  Google Scholar 

  84. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001). arXiv:nucl-th/0012025

    Article  ADS  Google Scholar 

  85. D. Kharzeev, E. Levin, Phys. Lett. B 523, 79 (2001). arXiv:nucl-th/0108006

    Article  ADS  Google Scholar 

  86. D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005). arXiv:hep-ph/0408050

    Article  ADS  Google Scholar 

  87. A. Adare et al. (PHENIX Collaboration), arXiv:0801.4020 [nucl-ex]

  88. D. Kharzeev, C. Lourenco, M. Nardi, H. Satz, Z. Phys. C 74, 307 (1997). arXiv:hep-ph/9612217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri E. Kharzeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharzeev, D.E. Parton energy loss at strong coupling and the universal bound. Eur. Phys. J. C 61, 675–682 (2009). https://doi.org/10.1140/epjc/s10052-008-0860-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0860-7

PACS

Navigation