Advertisement

The European Physical Journal C

, Volume 59, Issue 4, pp 847–860 | Cite as

Rare decays of Λ b Λ γ and Λ b Λ l + l in universal extra-dimension model

Regular Article - Theoretical Physics

Abstract

The exclusive weak decay of Λ b Λ γ and Λ b Λ l + l are investigated in the Appelquist–Cheng–Dobrescu model, which is an extension of the standard model in the presence of universal extra dimensions. Employing the transition form factors obtained in the light-cone sum rules, we analyze how the invariant-mass distribution, the forward–backward asymmetry and the polarization asymmetry of the Λ baryon of these decay modes can be used to constrain the only additional free parameter with respect to the standard model, namely, the radius, R, of the extra dimension. Our results indicate that the Kaluza–Klein modes can lead to approximately 25% suppression of the branching ratio of Λ b Λ γ; however, their contributions can bring about 10% enhancement to the decay rate of Λ b Λ l + l . It is shown that in the present scenario the zero position of the forward–backward asymmetry of Λ b Λ μ + μ is sensitive to the compactification parameter R, while the measurement of polarizations of Λ baryon in the Λ b decays are not a useful tool to provide any valuable information for the universal extra-dimension model.

Keywords

Form Factor Extra Dimension Transition Form Factor Universal Extra Dimension Polarization Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Heavy Flavor Averaging Group, arXiv:0808.1297 [hep-ex], and online update at http://www.slac.stanford.edu/xorg/hfag/
  2. 2.
    T. Mannel, S. Recksiegel, J. Phys. G 24, 979 (1998). arXiv:hep-ph/9701399 CrossRefGoogle Scholar
  3. 3.
    R. Mohanta, A.K. Giri, M.P. Khanna, M. Ishida, S. Ishida, Prog. Theor. Phys. 102, 645 (1999). arXiv:hep-ph/9908291 CrossRefADSGoogle Scholar
  4. 4.
    H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, T.M. Yan, H.L. Yu, Phys. Rev. D 51, 1199 (1995). arXiv:hep-ph/9407303 CrossRefADSGoogle Scholar
  5. 5.
    H.Y. Cheng, B. Tseng, Phys. Rev. D 53, 1457 (1996). arXiv:ahep-ph/9502391. Erratum-ibid. D 55, 1697 (1997) CrossRefADSGoogle Scholar
  6. 6.
    C.S. Huang, H.G. Yan, Phys. Rev. D 59 114022 (1999). arXiv:hep-ph/9811303. Erratum-ibid. D 61, 039901 (2000) CrossRefADSGoogle Scholar
  7. 7.
    G. Hiller, A. Kagan, Phys. Rev. D 65, 074038 (2002). arXiv:hep-ph/0108074 CrossRefADSGoogle Scholar
  8. 8.
    X.G. He, T. Li, X.Q. Li, Y.M. Wang, Phys. Rev. D 74, 034026 (2006). arXiv:hep-ph/0606025 CrossRefADSGoogle Scholar
  9. 9.
    M.J. Aslam, Y.M. Wang, C.D. Lu, arXiv:0808.2113 [hep-ph]
  10. 10.
    I. Antoniadis, Phys. Lett. B 246, 377 (1990) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    T. Appelquist, H.C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001). arXiv:hep-ph/0012100 CrossRefADSGoogle Scholar
  12. 12.
    T. Appelquist, H.U. Yee, Phys. Rev. D 67, 055002 (2003). arXiv:hep-ph/0211023 CrossRefADSGoogle Scholar
  13. 13.
    K. Agashe, N.G. Deshpande, G.H. Wu, Phys. Lett. B 511, 85 (2001). arXiv:hep-ph/0103235 CrossRefADSGoogle Scholar
  14. 14.
    T. Appelquist, B.A. Dobrescu, Phys. Lett. B 516, 85 (2001). arXiv:hep-ph/0106140 CrossRefADSGoogle Scholar
  15. 15.
    J.F. Oliver, J. Papavassiliou, A. Santamaria, Phys. Rev. D 67, 056002 (2003). arXiv:hep-ph/0212391 CrossRefADSGoogle Scholar
  16. 16.
    A.J. Buras, M. Spranger, A. Weiler, Nucl. Phys. B 660, 225 (2003). arXiv:hep-ph/0212143 CrossRefADSGoogle Scholar
  17. 17.
    A.J. Buras, A. Poschenrieder, M. Spranger, A. Weiler, Nucl. Phys. B 678, 455 (2004). arXiv:hep-ph/0306158 CrossRefADSGoogle Scholar
  18. 18.
    U. Haisch, A. Weiler, Phys. Rev. D 76, 034014 (2007). arXiv:hep-ph/0703064 CrossRefADSGoogle Scholar
  19. 19.
    P. Colangelo, F. De Fazio, R. Ferrandes, T.N. Pham, Phys. Rev. D 73, 115006 (2006). arXiv:hep-ph/0604029 CrossRefADSGoogle Scholar
  20. 20.
    I. Ahmed, M.A. Paracha, M.J. Aslam, Eur. Phys. J. C 54, 591 (2008). arXiv:0802.0740 [hep-ph] CrossRefADSGoogle Scholar
  21. 21.
    A. Saddique, M.J. Aslam, C.D. Lu, Eur. Phys. J. C 56, 267 (2008). arXiv:0803.0192 [hep-ph] CrossRefADSGoogle Scholar
  22. 22.
    R. Mohanta, A.K. Giri, Phys. Rev. D 75, 035008 (2007). arXiv:hep-ph/0611068 CrossRefADSGoogle Scholar
  23. 23.
    P. Colangelo, F. De Fazio, R. Ferrandes, T.N. Pham, Phys. Rev. D 77, 055019 (2008). arXiv:0709.2817 [hep-ph] CrossRefADSGoogle Scholar
  24. 24.
    T.M. Aliev, M. Savci, Eur. Phys. J. C 50, 91 (2007). arXiv:hep-ph/0606225 CrossRefADSGoogle Scholar
  25. 25.
    T.M. Aliev, M. Savci, B.B. Sirvanli, Eur. Phys. J. C 52, 375 (2007). arXiv:hep-ph/0608143 CrossRefADSGoogle Scholar
  26. 26.
    Y.M. Wang, Y. Li, C.D. Lu, arXiv:0804.0648 [hep-ph]
  27. 27.
    G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996). arXiv:hep-ph/9512380 CrossRefADSGoogle Scholar
  28. 28.
    A.J. Buras, M. Misiak, M. Munz, S. Pokorski, Nucl. Phys. B 424, 374 (1994). arXiv:hep-ph/9311345 CrossRefADSGoogle Scholar
  29. 29.
    M. Misiak, Nucl. Phys. B 393, 23 (1993). Erratum-ibid. B 439, 461 (1995) CrossRefADSGoogle Scholar
  30. 30.
    A.J. Buras, M. Munz, Phys. Rev. D 52, 186 (1995). arXiv:hep-ph/9501281 CrossRefADSGoogle Scholar
  31. 31.
    C.H. Chen, C.Q. Geng, Phys. Rev. D 64, 074001 (2001). arXiv:hep-ph/0106193 CrossRefADSGoogle Scholar
  32. 32.
    T.M. Aliev, A. Ozpineci, M. Savci, Nucl. Phys. B 649, 168 (2003). arXiv:hep-ph/0202120 CrossRefADSGoogle Scholar
  33. 33.
    T.M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D 67, 035007 (2003). arXiv:hep-ph/0211447 CrossRefADSGoogle Scholar
  34. 34.
    T.M. Aliev, V. Bashiry, M. Savci, Nucl. Phys. B 709, 115 (2005). arXiv:hep-ph/0407217 CrossRefADSGoogle Scholar
  35. 35.
    T.M. Aliev, M. Savci, J. High Energy Phys. 0605, 001 (2006). arXiv:hep-ph/0507324 CrossRefADSGoogle Scholar
  36. 36.
    I.I. Balitsky, V.M. Braun, A.V. Kolesnichenko, Nucl. Phys. B 312, 509 (1989) CrossRefADSGoogle Scholar
  37. 37.
    I.I. Balitsky, V.M. Braun, A.V. Kolesnichenko, Sov. J. Nucl. Phys. 44, 1028 (1986). Yad. Fiz. 44, 1582 (1986) Google Scholar
  38. 38.
    V.M. Braun, I.E. Filyanov, Z. Phys. C 44, 157 (1989). Sov. J. Nucl. Phys. 50 (1989 YAFIA, 50, 818–830.1989) 511.1989 YAFIA, 50, 818 CrossRefGoogle Scholar
  39. 39.
    V.L. Chernyak, I.R. Zhitnitsky, Nucl. Phys. B 345, 137 (1990) CrossRefADSGoogle Scholar
  40. 40.
    P. Ball, V.M. Braun, H.G. Dosch, Phys. Rev. D 44, 3567 (1991) CrossRefADSGoogle Scholar
  41. 41.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979) CrossRefADSGoogle Scholar
  42. 42.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979) CrossRefADSGoogle Scholar
  43. 43.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979) CrossRefADSGoogle Scholar
  44. 44.
    V. Braun, R.J. Fries, N. Mahnke, E. Stein, Nucl. Phys. B 589, 381 (2000). arXiv:hep-ph/0007279. Erratum-ibid. B 607 (2001) 433 CrossRefADSGoogle Scholar
  45. 45.
    M.Q. Huang, D.W. Wang, arXiv:hep-ph/0608170
  46. 46.
    V.M. Braun, A. Lenz, N. Mahnke, E. Stein, Phys. Rev. D 65, 074011 (2002). arXiv:hep-ph/0112085 CrossRefADSGoogle Scholar
  47. 47.
    V.L. Chernyak, A.A. Ogloblin, I.R. Zhitnitsky, Z. Phys. C 42, 569 (1989) CrossRefGoogle Scholar
  48. 48.
    G.R. Farrar, H. Zhang, A.A. Ogloblin, I.R. Zhitnitsky, Nucl. Phys. B 311, 585 (1989) CrossRefADSGoogle Scholar
  49. 49.
    V.M. Braun, I.E. Halperin, Phys. Lett. B 328, 457 (1994). arXiv:hep-ph/9402270 CrossRefADSGoogle Scholar
  50. 50.
    W.M. Yao et al., J. Phys. G 33, 1 (2006) CrossRefADSGoogle Scholar
  51. 51.
    A. Ali, T. Mannel, T. Morozumi, Phys. Lett. B 273, 505 (1991) CrossRefADSGoogle Scholar
  52. 52.
    C.H. Chen, C.Q. Geng, Phys. Rev. D 63, 114024 (2001). arXiv:hep-ph/0101171 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesCASBeijingChina
  3. 3.National Center for PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.Centre for Advanced Mathematics and PhysicsNational University of Science and TechnologyRawalpindiPakistan

Personalised recommendations