Skip to main content
Log in

Thermodynamics of Gauss–Bonnet black holes revisited

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the Gauss–Bonnet black hole in five dimensional anti-de Sitter spacetimes (GBAdS). We analyze all thermodynamic quantities of the GBAdS, which is characterized by the Gauss–Bonnet coupling c and mass M, comparing with those of the Born–Infeld-AdS (BIAdS), Reissner–Norström-AdS black holes (RNAdS), Schwarzschild-AdS (SAdS), and BTZ black holes. For c<0 we cannot obtain the black hole with positively definite thermodynamic quantities of mass, temperature, and entropy, because the entropy does not satisfy the area law. On the other hand, for c>0, we find the BIAdS-like black hole, showing that the coupling c plays the role of a pseudo-charge. Importantly, we could not obtain the SAdS in the limit of c→0, which means that the GBAdS is basically different from the SAdS. In addition, we clarify the connections between thermodynamic and dynamical stability. Finally, we also conjecture that if a black hole is big and thus globally stable, its quasi-normal modes may take on analytic expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.G. Boulware, S. Deser, String generated gravity models. Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  2. R.C. Myers, J.Z. Simon, Black hole thermodynamics in lovelock gravity. Phys. Rev. D 38, 2434 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.J. Gross, E. Witten, Superstring modifications of Einstein’s equations. Nucl. Phys. B 277, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.R. Metsaev, A.A. Tseytlin, Two loop beta function for the generalized bosonic sigma model. Phys. Lett. B 191, 354 (1987)

    Article  ADS  Google Scholar 

  5. C.G. Callan, R.C. Myers, M.J. Perry, Black holes in string theory. Nucl. Phys. B 311, 673 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. R.C. Myers, Higher derivative gravity, surface terms and string theory. Phys. Rev. D 36, 392 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.T. Wheeler, Symmetric solutions to the Gauss–Bonnet extended Einstein equations. Nucl. Phys. B 268, 737 (1986)

    Article  ADS  Google Scholar 

  8. Y.M. Cho, I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 66, 024044 (2002). arXiv:hep-th/0202140

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Torii, H. Maeda, Spacetime structure of static solutions in Gauss–Bonnet gravity: Neutral case. Phys. Rev. D 71, 124002 (2005). arXiv:hep-th/0504127

    Article  ADS  MathSciNet  Google Scholar 

  10. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131

    MATH  MathSciNet  Google Scholar 

  12. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170

    Article  ADS  MathSciNet  Google Scholar 

  13. T.K. Dey, S. Mukherji, S. Mukhopadhyay, S. Sarkar, Phase transitions in higher derivative gravity and gauge theory: R-charged black holes. J. High. Energy Phys. 0709, 026 (2007). arXiv:0706.3996 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. Y.S. Myung, Phase transition between non-extremal and extremal Reissner–Nordstrom black holes. Mod. Phys. Lett. A 23, 667 (2008). arXiv:0710.2568 [gr-qc]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. T.K. Dey, S. Mukherji, S. Mukhopadhyay, S. Sarkar, Phase transitions in higher derivative gravity. J. High. Energy Phys. 0704, 014 (2007). arXiv:hep-th/0609038

    Article  ADS  MathSciNet  Google Scholar 

  16. Y.S. Myung, Y.-W. Kim, Y.-J. Park, Thermodynamics of Einstein–Born–Infeld black holes in three dimensions. Phys. Rev. D 78, 044020 (2008). arXiv:0804.0301 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  17. Y.S. Myung, Y.-W. Kim, Y.-J. Park, Thermodynamics and phase transitions in the Born–Infeld-anti-de Sitter black holes. Phys. Rev. D. 78, 084002 (2008). arXiv:0805.0187 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. K.D. Kokkotas, B.G. Schmidt, Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999). arXiv:gr-qc/9909058

    ADS  MathSciNet  Google Scholar 

  19. D. Birmingham, I. Sachs, S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes. Phys. Rev. Lett. 88, 151301 (2002). arXiv:hep-th/0112055

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Birmingham, S. Mokhtari, Exact gravitational quasi-normal frequencies of topological black holes. Phys. Rev. D 74, 084026 (2006). arXiv:hep-th/0609028

    Article  ADS  MathSciNet  Google Scholar 

  21. G.T. Horowitz, V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000). arXiv:hep-th/9909056

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Siopsis, Analytic calculation of quasi-normal modes. arXiv:0804.2713 [hep-th]

  23. Y.S. Myung, H.W. Lee, Unitarity issue in BTZ black holes. Mod. Phys. Lett. A 21, 1737 (2006). arXiv:hep-th/0506031

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. S. Musiri, G. Siopsis, Asymptotic form of quasi-normal modes of large AdS black holes. Phys. Lett. B 576, 309 (2003). arXiv:hep-th/0308196

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. E. Berti, V. Cardoso, Quasinormal modes and thermodynamic phase transitions. Phys. Rev. D 77, 087501 (2008). arXiv:0802.1889 [hep-th]

    Article  ADS  Google Scholar 

  26. J. Grain, A. Barrau, Eur. Phys. J. C 53, 641 (2008). arXiv:hep-th/0701265

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Hirayama, Negative modes of Schwarzschild black hole in Einstein–Gauss–Bonnet Theory. arXiv:0804.3694 [gr-qc]

  28. R. Myers, Superstring gravity and black holes. Nucl. Phys. B 289, 701 (1987)

    Article  ADS  Google Scholar 

  29. S. Nojiri, S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining–deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001) [Erratum: Phys. Lett. B 542, 301 (2002)]. arXiv:hep-th/0109122

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. R.G. Cai, Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Cvetic, S. Nojiri, S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss–Bonnet gravity. Nucl. Phys. B 628, 295 (2002). arXiv:hep-th/0112045

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. I.P. Neupane, Black hole entropy in string-generated gravity models. Phys. Rev. D 67, 061501 (2003). arXiv:hep-th/0212092

    Article  ADS  MathSciNet  Google Scholar 

  33. I.P. Neupane, Thermodynamic and gravitational instability on hyperbolic spaces. Phys. Rev. D 69, 084011 (2004). arXiv:hep-th/0302132

    Article  ADS  Google Scholar 

  34. T. Clunan, S.F. Ross, D.J. Smith, On Gauss–Bonnet black hole entropy. Class. Quantum Gravity 21, 3447 (2004). arXiv:gr-qc/0402044

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. P.C.W. Davies, The thermodynamic theory of black holes. Proc. R. Soc. Lond. A 353, 499 (1977)

    Article  ADS  Google Scholar 

  36. D. Pavon, Phase transition in Reissner–Nordström black holes. Phys. Rev. D 43, 2495 (1991)

    Article  ADS  Google Scholar 

  37. J. Jing, Q. Pan, Quasinormal modes and second order thermodynamic phase transition for Reissner–Nordström black hole. Phys. Lett. B 660, 13 (2008). arXiv:0802.0043 [gr-qc]

    Article  ADS  Google Scholar 

  38. Y.S. Myung, Y.-W. Kim, Y.-J. Park, Ruppeiner geometry and 2D dilaton gravity in the thermodynamics of black holes. Phys. Lett. B 663, 342 (2008). arXiv:0802.2152 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  39. Y.S. Myung, Phase transition between the BTZ black hole and AdS space. Phys. Lett. B 638, 515 (2006). arXiv:gr-qc/0603051

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Harmark, V. Niarchos, N.A. Obers, Instabilities of black strings and branes. Class. Quantum Gravity 24, R1 (2007). arXiv:hep-th/0701022

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. S.S. Gubser, I. Mitra, Instability of charged black holes in anti-de Sitter space. arXiv:hep-th/0009126

  42. S.S. Gubser, I. Mitra, The evolution of unstable black holes in anti-de Sitter space. J. High. Energy Phys. 0108, 018 (2001). arXiv:hep-th/0011127

    Article  ADS  MathSciNet  Google Scholar 

  43. H.S. Reall, Classical and thermodynamic stability of black branes. Phys. Rev. D 64, 044005 (2001). arXiv:hep-th/0104071

    Article  ADS  MathSciNet  Google Scholar 

  44. R.K. Kaul, P. Majumdar, Quantum black hole entropy. Phys. Lett. B 439, 267 (1998). arXiv:gr-qc/9801080

    Article  ADS  MathSciNet  Google Scholar 

  45. R.K. Kaul, P. Majumdar, Logarithmic correction to the Bekenstein–Hawking entropy. Phys. Rev. Lett. 84, 5255 (2000). arXiv:gr-qc/0002040

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula. Class. Quantum Gravity 17, 4175 (2000) arXiv:gr-qc/0005017

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. T.R. Govindarajan, R.K. Kaul, V. Suneeta, Logarithmic correction to the Bekenstein–Hawking entropy of the BTZ black. Class. Quantum Gravity 18, 2877 (2001). arXiv:gr-qc/0104010

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. D. Birmingham, S. Sen, An exact black hole entropy bound. Phys. Rev. D 63, 047501 (2001). arXiv:hep-th/0008051

    Article  ADS  MathSciNet  Google Scholar 

  49. R. Banerjee, B.R. Majhi, Quantum tunneling and back reaction. Phys. Lett. B 662, 62 (2008). arXiv:0801.0200 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  50. R. Banerjee, B.R. Majhi, Quantum tunneling beyond semiclassical approximation. J. High Energy Phys. 0806, 095 (2008). arXiv:0805.2220 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Das, P. Majumdar, R.K. Bhaduri, General logarithmic corrections to black hole entropy. Class. Quantum Gravity 19, 2355 (2002). arXiv:hep-th/0111001

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myung, Y.S., Kim, YW. & Park, YJ. Thermodynamics of Gauss–Bonnet black holes revisited. Eur. Phys. J. C 58, 337–346 (2008). https://doi.org/10.1140/epjc/s10052-008-0745-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0745-9

PACS

Navigation