Advertisement

The European Physical Journal C

, Volume 57, Issue 4, pp 809–815 | Cite as

Towards a quantization of gauge fields on de Sitter group by functional integral method

  • Viorel Chiritoiu
  • Gheorghe Zet
regular Article - Theoretical Physics
  • 35 Downloads

Abstract

A formulation of the de Sitter symmetry as a purely inner symmetry defined on a fixed Minkowski space-time is presented. We define the generators of the de Sitter group and write the structure equations using a constant deformation parameter λ. The conserved gauge currents are calculated, and their physical meaning is given. Local gauge transformations and the corresponding covariant derivative depending on the gauge fields are also obtained. We study the behavior of gauge fields, the torsion and curvature tensors and give a regularization technique in terms of the ζ function.

Keywords

Gauge Theory Heat Kernel Minkowski Space Killing Spinor Regularization Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.M. Dirac, Ann. Math. 36, 657 (1935) CrossRefMathSciNetGoogle Scholar
  2. 2.
    S.L. Adler, Phys. Rev. D 6, 3445 (1972) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    R. Aldrovandi, J.G. Pereira, arXiv:gr-qc/9610068 (1996)
  4. 4.
    R. Aldrovandi, J.G. Pereira, arXiv:gr-qc/9809061 (1998)
  5. 5.
    R. Banerjee, Ann. Phys. 322, 2129 (2007), arXiv:hep-th/0608045 MATHCrossRefADSGoogle Scholar
  6. 6.
    R. Banerjee, B.R. Majhi, Ann. Phys. 323, 705 (2008), arXiv:hep-th/0703207 MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    C. Wiesendanger, Class. Quant. Grav. 13, 681 (1996), arXiv:gr-qc/9505049 MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Blagojević, Gravitation and Gauge Symmetries (Institute of Physics Publishing, Bristol, 2002) MATHGoogle Scholar
  9. 9.
    R. Banerjee, S. Deguchi, Phys. Lett. B 632, 579 (2006), arXiv:hep-th/0509161 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M. Chaichian, N.F. Nelipa, Introduction to Gauge Field Theories (Springer, Berlin, 1984) Google Scholar
  11. 11.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Oxford University Press, London, 2002) Google Scholar
  12. 12.
    D. Bailin, A. Love, Introduction to Gauge Field Theory (Institute of Physics Publishing, Bristol, 1993) MATHGoogle Scholar
  13. 13.
    E. Fradkin, General Field Theory. Unpublished Google Scholar
  14. 14.
    G. Zet, V. Manta, S. Babeti, Int. J. Mod. Phys. C 14, 41 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    G. Zet, V. Manta, S. Oancea, I. Radinschi, B. Ciobanu, Math. Comput. Mod. 43, 458 (2006) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Chaichian, A. Demichev, Path Integrals in Physics, vol. I (Institute of Physics Publishing, Bristol, 2001) MATHGoogle Scholar
  17. 17.
    M. Chaichian, A. Demichev, Path Integrals in Physics, vol. II (Institute of Physics Publishing, Bristol, 2001) MATHGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Technical Physics Department “Politehnica” University TimisoaraTimisoaraRomania
  2. 2.Department of Physics “Gh. Asachi” Technical University IasiIasiRomania

Personalised recommendations