Advertisement

The European Physical Journal C

, Volume 55, Issue 3, pp 439–447 | Cite as

Jet quenching parameter \(\hat{q}\) in the stochastic QCD vacuum with Landau damping

Regular Article - Theoretical Physics

Abstract

We argue that the radiative energy loss of a parton traversing the quark–gluon plasma is determined by Landau damping of soft modes in the plasma. Using this idea, we calculate the jet quenching parameter of a gluon. The calculation is done in SU(3) quenched QCD within the stochastic vacuum model. At the LHC-relevant temperatures, the result depends on the gluon condensate, the vacuum correlation length, and the gluon Debye mass. Numerically, when the temperature varies from T=Tc to T = 900 MeV, the jet quenching parameter rises from \(\hat{q}=0\) to approximately 1.8 GeV2/fm. We compare our results with the predictions of perturbative QCD and other calculations.

Keywords

Wilson Loop Wilson Line Soft Mode Gluon Plasma Gluon Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 483, 291 (1997)CrossRefADSGoogle Scholar
  2. 2.
    R. Baier, D. Schiff, B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000)CrossRefADSGoogle Scholar
  3. 3.
    M. Gyulassy, I. Vitev, X.N. Wang, B.W. Zhang, arXiv:nucl-th/0302077Google Scholar
  4. 4.
    J. Dolejsi, J. Hüfner, B.Z. Kopeliovich, Phys. Lett. B 312, 235 (1993)CrossRefADSGoogle Scholar
  5. 5.
    O. Nachtmann, Ann. Phys. 209, 436 (1991)MATHCrossRefADSGoogle Scholar
  6. 6.
    S. Donnachie, H.G. Dosch, O. Nachtmann, P. Landshoff, Pomeron physics and QCD. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 19, 1 (2002)MathSciNetGoogle Scholar
  7. 7.
    H. Liu, K. Rajagopal, U.A. Wiedemann, Phys. Rev. Lett. 97, 182301 (2006)CrossRefADSGoogle Scholar
  8. 8.
    H. Liu, K. Rajagopal, U.A. Wiedemann, JHEP 03, 066 (2007)CrossRefADSGoogle Scholar
  9. 9.
    H.G. Dosch, Phys. Lett. B 190, 177 (1987)CrossRefADSGoogle Scholar
  10. 10.
    H.G. Dosch, Y.A. Simonov, Phys. Lett. B 205, 339 (1988)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. Di Giacomo, H.G. Dosch, V.I. Shevchenko, Y.A. Simonov, Phys. Rep. 372, 319 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A.I. Shoshi, F.D. Steffen, H.J. Pirner, Nucl. Phys. A 709, 131 (2002)MATHCrossRefADSGoogle Scholar
  13. 13.
    H.J. Pirner, N. Nurpeissov, Phys. Lett. B 595, 379 (2004)CrossRefADSGoogle Scholar
  14. 14.
    E. Meggiolaro, Phys. Lett. B 451, 414 (1999)CrossRefADSGoogle Scholar
  15. 15.
    A. Di Giacomo, H. Panagopoulos, Phys. Lett. B 285, 133 (1992)CrossRefADSGoogle Scholar
  16. 16.
    A. Di Giacomo, E. Meggiolaro, H. Panagopoulos, Nucl. Phys. B 483, 371 (1997)CrossRefADSGoogle Scholar
  17. 17.
    M. D’Elia, A. Di Giacomo, E. Meggiolaro, Phys. Rev. D 67, 114504 (2003)CrossRefADSGoogle Scholar
  18. 18.
    A. Di Giacomo, arXiv:hep-lat/9912016Google Scholar
  19. 19.
    A. Di Giacomo, Czech. J. Phys. 51, B9 (2001)CrossRefGoogle Scholar
  20. 20.
    A. Di Giacomo, arXiv:hep-lat/0204001Google Scholar
  21. 21.
    G.S. Bali, N. Brambilla, A. Vairo, Phys. Lett. B 421, 265 (1998)CrossRefADSGoogle Scholar
  22. 22.
    A.I. Shoshi, F.D. Steffen, H.G. Dosch, H.J. Pirner, Phys. Rev. D 68, 074004 (2003)CrossRefADSGoogle Scholar
  23. 23.
    D. Antonov, D. Ebert, Y.A. Simonov, Mod. Phys. Lett. A 11, 1905 (1996)CrossRefADSGoogle Scholar
  24. 24.
    D. Antonov, Surv. High Energ. Phys. 14, 265 (2000) Sect. 2.1Google Scholar
  25. 25.
    J.P. Blaizot, E. Iancu, Phys. Rep. 359, 355 (2002)MATHCrossRefADSGoogle Scholar
  26. 26.
    V.V. Klimov, Sov. J. Nucl. Phys. 33, 934 (1981)Google Scholar
  27. 27.
    V.V. Klimov, Sov. Phys. JETP 55, 199 (1982)Google Scholar
  28. 28.
    H.A. Weldon, Phys. Rev. D 26, 1394 (1982)CrossRefADSGoogle Scholar
  29. 29.
    A.M. Polyakov, Gauge Fields and Strings (Harwood Academic, Chur, 1987)Google Scholar
  30. 30.
    D. Antonov, H.J. Pirner, Eur. Phys. J. C 51, 633 (2007)CrossRefADSGoogle Scholar
  31. 31.
    P. Petreczky, Eur. Phys. J. C 43, 51 (2005)CrossRefADSGoogle Scholar
  32. 32.
    J. Braun, H.J. Pirner, Phys. Rev. D 75, 054031 (2007)CrossRefADSGoogle Scholar
  33. 33.
    D. Antonov, S. Domdey, H.J. Pirner, Nucl. Phys. A 789, 357 (2007)CrossRefADSGoogle Scholar
  34. 34.
    G.S. Bali, J. Fingberg, U.M. Heller, F. Karsch, K. Schilling, Phys. Rev. Lett. 71, 3059 (1993)CrossRefADSGoogle Scholar
  35. 35.
    F. Karsch, E. Lärmann, M. Lütgemeier, Phys. Lett. B 346, 94 (1995)CrossRefADSGoogle Scholar
  36. 36.
    G. Boyd, J. Engels, F. Karsch, E. Lärmann, C. Legeland, M. Lütgemeier, B. Petersson, Nucl. Phys. B 469, 419 (1996)CrossRefADSGoogle Scholar
  37. 37.
    N.O. Agasian, Phys. Lett. B 562, 257 (2003)MATHCrossRefADSGoogle Scholar
  38. 38.
    J. Casalderrey-Solana, X.N. Wang, Phys. Rev. C 77, 024902 (2008)CrossRefADSGoogle Scholar
  39. 39.
    G.E. Brown, C.H. Lee, M. Rho, E. Shuryak, Nucl. Phys. A 740, 171 (2004)CrossRefADSGoogle Scholar
  40. 40.
    G.E. Brown, L. Grandchamp, C.H. Lee, M. Rho, Phys. Rep. 391, 353 (2004)CrossRefADSGoogle Scholar
  41. 41.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part II (Pergamon, Oxford, 1980)Google Scholar
  42. 42.
    A. Majumder, B. Müller, X.N. Wang, Phys. Rev. Lett. 99, 192301 (2007)CrossRefADSGoogle Scholar
  43. 43.
    S.S. Gubser, Nucl. Phys. B 790, 175 (2008)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations