Advertisement

The European Physical Journal C

, Volume 55, Issue 2, pp 293–302 | Cite as

Jet hadrochemistry as a characteristic of jet quenching

Regular Article - Theoretical Physics

Abstract

Jets produced in nucleus–nucleus collisions at the LHC are expected to be strongly modified due to the interaction of the parton shower with the dense QCD matter. Here, we point out that jet quenching can leave signatures not only in the longitudinal and transverse jet energy and multiplicity distributions, but also in the hadrochemical composition of the jet fragments. In particular, we show that even in the absence of medium-effects at or after hadronization, the medium-modification of the parton shower may result in significant changes in jet hadrochemistry. We discuss how jet hadrochemistry can be studied within the high-multiplicity environment of nucleus–nucleus collisions at the LHC.

Keywords

Transverse Momentum Parton Shower Star Collaboration Nucleus Collision Hadron Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A 757, 184 (2005)CrossRefADSGoogle Scholar
  2. 2.
    PHOBOS Collaboration, B.B. Back et al., Nucl. Phys. A 757, 28 (2005)CrossRefADSGoogle Scholar
  3. 3.
    BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A 757, 1 (2005)CrossRefADSGoogle Scholar
  4. 4.
    STAR Collaboration, J. Adams et al., Nucl. Phys. A 757, 102 (2005)CrossRefADSGoogle Scholar
  5. 5.
    ALICE Collaboration, F. Carminati et al., J. Phys. G 30, 1517 (2004)CrossRefADSGoogle Scholar
  6. 6.
    ALICE Collaboration, B. Alessandro et al., J. Phys. G 32, 1295 (2006)CrossRefADSGoogle Scholar
  7. 7.
    D.G. d’Enterria et al., J. Phys. G 34, 2307 (2007)CrossRefADSGoogle Scholar
  8. 8.
    ATLAS Collaboration, H. Takai, Eur. Phys. J. C 34, S307 (2004)CrossRefGoogle Scholar
  9. 9.
    PHENIX Collaboration, K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002)CrossRefADSGoogle Scholar
  10. 10.
    PHENIX Collaboration, S.S. Adler et al., Phys. Rev. C 69, 034910 (2004)CrossRefADSGoogle Scholar
  11. 11.
    STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002)CrossRefADSGoogle Scholar
  12. 12.
    STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 91, 172302 (2003)CrossRefADSGoogle Scholar
  13. 13.
    PHOBOS Collaboration, B.B. Back et al., Phys. Lett. B 578, 297 (2004)CrossRefADSGoogle Scholar
  14. 14.
    BRAHMS Collaboration, I. Arsene et al., Phys. Rev. Lett. 91, 072305 (2003)CrossRefADSGoogle Scholar
  15. 15.
    STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 93, 252301 (2004)CrossRefADSGoogle Scholar
  16. 16.
    STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003)CrossRefADSGoogle Scholar
  17. 17.
    STAR Collaboration, D. Magestro, Nucl. Phys. A 774, 573 (2006)CrossRefADSGoogle Scholar
  18. 18.
    STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 97, 162301 (2006)CrossRefADSGoogle Scholar
  19. 19.
    X.N. Wang, Phys. Lett. B 579, 299 (2004)CrossRefADSGoogle Scholar
  20. 20.
    A. Dainese, C. Loizides, G. Paic, Eur. Phys. J. C 38, 461 (2005)CrossRefADSGoogle Scholar
  21. 21.
    K.J. Eskola, H. Honkanen, C.A. Salgado, U.A. Wiedemann, Nucl. Phys. A 747, 511 (2005)CrossRefADSGoogle Scholar
  22. 22.
    M. Gyulassy, I. Vitev, X.N. Wang, Phys. Rev. Lett. 86, 2537 (2001)CrossRefADSGoogle Scholar
  23. 23.
    T. Hirano, Y. Nara, Phys. Rev. C 66, 041901 (2002)CrossRefADSGoogle Scholar
  24. 24.
    T. Renk, J. Ruppert, C. Nonaka, S.A. Bass, Phys. Rev. C 75, 031902 (2007)CrossRefADSGoogle Scholar
  25. 25.
    C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 93, 042301 (2004)CrossRefADSGoogle Scholar
  26. 26.
    S. Pal, S. Pratt, Phys. Lett. B 574, 21 (2003)CrossRefADSGoogle Scholar
  27. 27.
    N. Borghini, U.A. Wiedemann, arXiv:hep-ph/0506218Google Scholar
  28. 28.
    A. Majumder, E. Wang, X.N. Wang, arXiv:nucl-th/0412061Google Scholar
  29. 29.
    N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 93, 242301 (2004)CrossRefADSGoogle Scholar
  30. 30.
    I. Vitev, Phys. Lett. B 630, 78 (2005)CrossRefADSGoogle Scholar
  31. 31.
    A.D. Polosa, C.A. Salgado, Phys. Rev. C 75, 041901 (2007)CrossRefADSGoogle Scholar
  32. 32.
    I.P. Lokhtin, S.V. Petrushanko, L.I. Sarycheva, A.M. Snigirev, Phys. Atom. Nucl. 69, 1609 (2006)CrossRefADSGoogle Scholar
  33. 33.
    I.P. Lokhtin, S.V. Petrushanko, L.I. Sarycheva, A.M. Snigirev, Yad. Fiz. 69, 1643 (2006)Google Scholar
  34. 34.
    M. Gyulassy, X.N. Wang, Nucl. Phys. B 420, 583 (1994)CrossRefADSGoogle Scholar
  35. 35.
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997)CrossRefADSGoogle Scholar
  36. 36.
    B.G. Zakharov, JETP Lett. 65, 615 (1997)CrossRefADSGoogle Scholar
  37. 37.
    U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000)CrossRefADSGoogle Scholar
  38. 38.
    M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 594, 371 (2001)MATHCrossRefADSGoogle Scholar
  39. 39.
    X.N. Wang, X.F. Guo, Nucl. Phys. A 696, 788 (2001)CrossRefADSGoogle Scholar
  40. 40.
    R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003)CrossRefADSGoogle Scholar
  41. 41.
    D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).CrossRefADSGoogle Scholar
  42. 42.
    V. Greco, C.M. Ko, P. Levai, Phys. Rev. C 68, 034904 (2003)CrossRefADSGoogle Scholar
  43. 43.
    R.C. Hwa, C.B. Yang, Phys. Rev. C 67, 034902 (2003)CrossRefADSGoogle Scholar
  44. 44.
    R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, Phys. Rev. C 68, 044902 (2003)CrossRefADSGoogle Scholar
  45. 45.
    L. Maiani, A.D. Polosa, V. Riquer, C.A. Salgado, Phys. Lett. B 645, 138 (2007)CrossRefADSGoogle Scholar
  46. 46.
    R.J. Fries, B. Muller, Eur. Phys. J. C 34, S279 (2004)CrossRefADSGoogle Scholar
  47. 47.
    E. Braaten, M.H. Thoma, Phys. Rev. D 44, 1298 (1991)CrossRefADSGoogle Scholar
  48. 48.
    M. Djordjevic, Phys. Rev. C 74, 064907 (2006)CrossRefADSGoogle Scholar
  49. 49.
    A. Adil, M. Gyulassy, W.A. Horowitz, S. Wicks, Phys. Rev. C 75, 044906 (2007)CrossRefADSGoogle Scholar
  50. 50.
    Y.L. Dokshitzer, S. Troyan, XIX Winter School of LNPI (1984), vol. 1, p. 144, preprint LNPI-922Google Scholar
  51. 51.
    Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, Adv. Ser. Direct High Energ. Phys. 5, 241 (1988)Google Scholar
  52. 52.
    Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, J. Phys. G 17, 1481 (1991)CrossRefADSGoogle Scholar
  53. 53.
    C.P. Fong, B.R. Webber, Nucl. Phys. B 355, 54 (1991)CrossRefADSGoogle Scholar
  54. 54.
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, Z. Phys. C 27, 65 (1985)CrossRefADSGoogle Scholar
  55. 55.
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, Z. Phys. C 31, 213 (1986)CrossRefADSGoogle Scholar
  56. 56.
    TPC/Two Gamma Collaboration, H. Aihara et al., Phys. Rev. Lett. 52, 577 (1984)CrossRefADSGoogle Scholar
  57. 57.
    CDF Collaboration, D. Acosta et al., Phys. Rev. D 68, 012003 (2003)CrossRefADSGoogle Scholar
  58. 58.
    D.K. Srivastava, C. Gale, R.J. Fries, Phys. Rev. C 67, 034903 (2003)CrossRefADSGoogle Scholar
  59. 59.
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, D. Schiff, JHEP 0109, 033 (2001)CrossRefADSGoogle Scholar
  60. 60.
    B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000)CrossRefADSGoogle Scholar
  61. 61.
    K.J. Eskola, H. Honkanen, H. Niemi, P.V. Ruuskanen, S.S. Rasanen, Phys. Rev. C 72, 044904 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Physics Department, Theory UnitCERNGeneva 23Switzerland
  2. 2.M. Smoluchowski Institute of PhysicsJagellonian UniversityCracowPoland

Personalised recommendations