Skip to main content
Log in

Delay time computation for relativistic tunneling particles

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the tunneling zone solutions of a one-dimensional electrostatic potential for the relativistic (Dirac to Klein–Gordon) wave equation when the incoming wave packet exhibits the possibility of being almost totally transmitted through the barrier. The transmission probabilities, the phase times and the dwell times for the proposed relativistic dynamics are obtained and the conditions for the occurrence of accelerated tunneling transmission are all quantified. We show that, in some limiting cases, the analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) tunneling times are all overcome. Lessons concerning the phenomenology of the relativistic tunneling suggest revealing insights into condensed-matter experiments using electrostatic barriers for which the accelerated tunneling effect can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Büttiker, S. Washburn, Nature 422, 271 (2003)

    Article  ADS  Google Scholar 

  2. H.G. Winful, Nature 424, 638 (2003)

    Article  ADS  Google Scholar 

  3. H.G. Winful, Phys. Rev. Lett. 91, 260401 (2003)

    Article  ADS  Google Scholar 

  4. V.S. Olkhovsky, E. Recami, J. Jakiel, Phys. Rep. 398, 133 (2004)

    Article  ADS  Google Scholar 

  5. A. Enders, G. Nimtz, J. Phys. I France 2, 1693 (1992)

    Article  Google Scholar 

  6. A.M. Steinberg, P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 71, 708 (1993)

    Article  ADS  Google Scholar 

  7. C. Spielmann, R. Szipöcs, A. Stingl, F. Krausz, Phys. Rev. Lett. 73, 2308 (1994)

    Article  ADS  Google Scholar 

  8. G. Nimtz, A. Enders, H. Spieker, J. Phys. I France 4, 1 (1994)

    Google Scholar 

  9. A. Haybel, G. Nimtz, Ann. Phys. (Leipzig) 10, 707 (2001)

    Article  ADS  Google Scholar 

  10. E.H. Hauge, J.A. Stovneng, Rev. Mod. Phys. 61, 917 (1989)

    Article  ADS  Google Scholar 

  11. D. Sokolorski, L.M. Baskin, Phys. Rev. A 36, 4604 (1987)

    Article  ADS  Google Scholar 

  12. K. Imafuku, I. Ohba, Y. Yamanaka, Phys. Rev. A 56, 1142 (1997)

    Article  ADS  Google Scholar 

  13. M. Abolhasani, M. Golshani, Phys. Rev. A 62, 012106 (2000)

    Article  ADS  Google Scholar 

  14. S. Brouard, R. Sala, J.G. Muga, Phys. Rev. A 49, 4312 (1994)

    Article  ADS  Google Scholar 

  15. M. Büttiker, Phys. Rev. B 27, 6178 (1983)

    Article  ADS  Google Scholar 

  16. M. Büttiker, R. Landauer, Phys. Rev. Lett. 49, 1739 (1982)

    Article  ADS  Google Scholar 

  17. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. Landauer, T. Martin, Rev. Mod. Phys. 66, 217 (1994)

    Article  ADS  Google Scholar 

  19. V.S. Olkhovsky, E. Recami, Phys. Rep. 214, 339 (1992)

    Article  ADS  Google Scholar 

  20. V.S. Olkhovsky, E. Recami, F. Raciti, A.K. Zaichenko, J. Phys. I France 5, 1351 (1995)

    Article  Google Scholar 

  21. J. Jakiel, V.S. Olkhovsky, E. Recami, Phys. Lett. A 248, 156 (1998)

    Article  ADS  Google Scholar 

  22. V.S. Olkhovsky, E. Recami, G. Salesi, Europhys. Lett. 57, 879 (2002)

    Article  ADS  Google Scholar 

  23. C.G.B. Garret, D.E. McCumber, Phys. Rev. A 01, 305 (1970)

    Article  ADS  Google Scholar 

  24. S. Chu, W. Wong, Phys. Rev. Lett. 48, 738 (1982)

    Article  ADS  Google Scholar 

  25. B. Segard, B. Macke, Phys. Lett. A 109, 213 (1985)

    Article  ADS  Google Scholar 

  26. M.W. Mitchell, R.Y. Chiao, Phys. Lett. A 230, 122 (1997)

    Article  Google Scholar 

  27. L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  28. T.E. Hartman, J. Appl. Phys. 33, 3427 (1962)

    Article  ADS  Google Scholar 

  29. F. Delgado et al., Phys. Rev. A 68, 032101 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Calogeracos, N. Dombey, Int. J. Mod. Phys. A 14, 631 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N. Dombey, A. Calogeracos, Phys. Rep. 315, 41 (1999)

    Article  Google Scholar 

  32. C.-F. Li, X. Chen, Ann. Phys. (Leipzig) 12, 916 (2002)

    ADS  Google Scholar 

  33. O. Klein, Z. Phys. 53, 157 (1929)

    Article  ADS  Google Scholar 

  34. C. Itzykson, J.B. Zuber, Quantum Field Theory (Mc Graw-Hill Inc., New York, 1980)

    Google Scholar 

  35. R.K. Su, G. Siu, X. Chou, J. Phys. A 26, 1001 (1993)

    Article  ADS  Google Scholar 

  36. B.R. Holstein, Am. J. Phys. 66, 507 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Nitta, T. Kudo, H. Minowa, Am. J. Phys. 67, 966 (1999)

    Article  ADS  Google Scholar 

  38. P. Krekora, Q. Su, R. Grobe, Phys. Rev. Lett. 92, 040406 (2004)

    Article  ADS  Google Scholar 

  39. P. Krekora, Q. Su, R. Grobe, Phys. Rev. A 63, 032107 (2001)

    Article  ADS  Google Scholar 

  40. V. Petrillo, D. Janner, Phys. Rev. A 67, 012110 (2003)

    Article  ADS  Google Scholar 

  41. V.L. Telegdi, in Klein’s Paradox Revisited, ed. by U. Lingstrom (World Scientific, Singapore, 1995)

  42. A. Hansen, F. Ravndal, Phys. Scripta 23 1036 (1999)

  43. R. Landauer, Nature 341, 567 (1989)

    Article  ADS  Google Scholar 

  44. A.E. Bernardini, Phys. Rev. A 74, 062111 (2006)

    Article  ADS  Google Scholar 

  45. A.E. Bernardini, S. De Leo, P.P. Rotelli, Mod. Phys. Lett. A 19, 2717 (2004)

    Article  MATH  Google Scholar 

  46. B. Gaveau et al., Phys. Rev. Lett. 53, 419 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  47. W. Greiner, B. Mueller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985)

    Google Scholar 

  48. D.N. Page, New J. Phys. 7, 203 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  49. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nature Phys. 02, 620 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Bernardini.

Additional information

PACS

03.65.Xp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardini, A. Delay time computation for relativistic tunneling particles. Eur. Phys. J. C 55, 125–132 (2008). https://doi.org/10.1140/epjc/s10052-008-0571-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0571-0

Keywords

Navigation