The European Physical Journal C

, Volume 53, Issue 4, pp 659–666 | Cite as

Bound state inequality for high mass exchanges in a scalar field model

  • S. De Leo
  • P. Rotelli
Regular Article - Theoretical Physics


Ladder diagrams are relevant for the study of bound states. The condition on the coupling strength for the existence of a bound state has been deduced in a scalar field theory for the case of low mass exchanges. We apply this approach to the case of very high mass exchanges.


Yukawa Coupling Loop Momentum Yukawa Potential Ladder Diagram Klein Paradox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley and Sons, Paris, 1977)Google Scholar
  2. 2.
    C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, Singapore, 1985)Google Scholar
  3. 3.
    J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, New York 1987)Google Scholar
  4. 4.
    F. Gross, Relativistic Quantum Mechanics and Field Theory (John and Wiley Sons, New York, 1993)Google Scholar
  5. 5.
    S. De Leo, P. Rotelli, Phys. Rev. D 69, 034006 (2004)CrossRefADSGoogle Scholar
  6. 6.
    O. Klein, Z. Phys. 53, 157 (1929)CrossRefADSGoogle Scholar
  7. 7.
    A. Hansen, F. Ravndal, Phys. Scripta 23, 1036 (1981)CrossRefADSGoogle Scholar
  8. 8.
    M. Soffel, B. Müller, W. Greiner, Phys. Rep. 85, 51 (1982)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    P. Krekora, Q. Su, R. Grobe, Phys. Rev. Lett. 92, 040406 (2004)CrossRefADSGoogle Scholar
  10. 10.
    S. De Leo, P. Rotelli, Phys. Rev. A 73, 042107 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1999)MATHGoogle Scholar
  12. 12.
    W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947)CrossRefADSGoogle Scholar
  13. 13.
    H.A. Bethe, E.E. Salpeter, Phys. Rev. 84, 1232 (1951)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    E.E. Salpeter, Phys. Rev. 87, 328 (1952)MATHCrossRefADSGoogle Scholar
  15. 15.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Springer, Berlin, 1957)MATHGoogle Scholar
  16. 16.
    R. Blankenbecher, R. Sugar, Phys. Rev. 142, 1051 (1966)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    F. Gross, Phys. Rev. 186, 1448 (1969)CrossRefADSGoogle Scholar
  18. 18.
    B. Kayser, J. Phys. G 33, 156 (2006)Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of CampinasCampinasBrazil
  2. 2.Department of PhysicsUniversity of Lecce and INFN LecceLecceItaly

Personalised recommendations