Advertisement

The European Physical Journal C

, Volume 53, Issue 3, pp 501–523 | Cite as

Automating dipole subtraction for QCD NLO calculations

Open Access
Specail Article - Tools for Experiment and Theory

Abstract

In this publication the construction of an automatic algorithm to subtract infrared divergences in real QCD corrections through the Catani–Seymour dipole subtraction method [1,2] is reported. The resulting computer code has been implemented in the matrix element generator AMEGIC++ [3]. This will allow for the automatic generation of dipole subtraction terms and their integrals over the one-parton emission phase space for any given process. If the virtual matrix element is provided as well, this then directly leads to an NLO QCD parton level event generator.

Keywords

Subtraction Term Insertion Operator Phase Space Point Real Correction Dipole Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Catani, M.H. Seymour, Nucl. Phys. B 485, 291 (1997) [arXiv:hep-ph/9605323]CrossRefADSGoogle Scholar
  2. 2.
    S. Catani, M.H. Seymour, Nucl. Phys. B 510, 503 (1998) [Erratum]CrossRefADSGoogle Scholar
  3. 3.
    F. Krauss, R. Kuhn, G. Soff, JHEP 0202, 044 (2002) [arXiv:hep-ph/0109036]CrossRefADSGoogle Scholar
  4. 4.
    J.D. Bjorken, S.D. Drell, (Bibliograph. Inst.-Hochschultaschenbuecher, Mannheim, 1967) Vol. 101, p. 409Google Scholar
  5. 5.
    C. Itzykson, J.B. Zuber, International Series In Pure and Applied Physics (Mcgraw-Hill, New York, 1980)Google Scholar
  6. 6.
    F. Halzen, A.D. Martin, Quarks And Leptons: An Introductory Course In Modern Particle Physics (Wiley, New York, 1984)Google Scholar
  7. 7.
    D.Y. Bardin, G. Passarino, The standard model in the making: Precision study of the electroweak interactions (Clarendon, Oxford, 1999)Google Scholar
  8. 8.
    M. Bohm, A. Denner, H. Joos, Gauge theories of the strong and electroweak interactions (Teubner, Stuttgart, 2001)Google Scholar
  9. 9.
    R.K. Ellis, W.J. Stirling, B.R. Webber, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996)Google Scholar
  10. 10.
    CTEQ Collaboration, R. Brock et al., Rev. Mod. Phys. 67, 157 (1995)CrossRefGoogle Scholar
  11. 11.
    J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 261, 104 (1985)CrossRefADSGoogle Scholar
  12. 12.
    J.C. Collins, D.E. Soper, G. Sterman, Adv. Ser. Direct High Energ. Phys. 5, 1 (1988) [arXiv:hep-ph/0409313]Google Scholar
  13. 13.
    A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132, 306 (2000) [arXiv:hep-ph/0002082]MATHCrossRefADSGoogle Scholar
  14. 14.
    C.G. Papadopoulos, Comput. Phys. Commun. 137, 247 (2001) [arXiv:hep-ph/0007335]MATHCrossRefADSGoogle Scholar
  15. 15.
    M. Moretti, T. Ohl, J. Reuter, arXiv:hep-ph/0102195Google Scholar
  16. 16.
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307, 001 (2003) [arXiv:hep-ph/0206293]CrossRefADSGoogle Scholar
  17. 17.
    F. Maltoni, T. Stelzer, JHEP 0302, 027 (2003) [arXiv:hep-ph/0208156]CrossRefADSGoogle Scholar
  18. 18.
    P. Pascual, R. Tarrach, Lect. Notes Phys. 194, 1 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002) [arXiv:hep-ph/0201206]CrossRefADSGoogle Scholar
  20. 20.
    C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002) [arXiv:hep-ph/0207004]CrossRefADSGoogle Scholar
  21. 21.
    J. Campbell, R.K. Ellis, Phys. Rev. D 65, 113007 (2002) [arXiv:hep-ph/0202176]CrossRefADSGoogle Scholar
  22. 22.
    Z. Nagy, Phys. Rev. D 68, 094002 (2003) [arXiv:hep-ph/0307268]CrossRefADSGoogle Scholar
  23. 23.
    Z. Nagy, Z. Trocsanyi, Phys. Lett. B 634, 498 (2006) [arXiv:hep-ph/0511328]CrossRefADSGoogle Scholar
  24. 24.
    J.M. Campbell, R.K. Ellis, G. Zanderighi, JHEP 0610, 028 (2006) [arXiv:hep-ph/0608194]CrossRefADSGoogle Scholar
  25. 25.
    S. Dittmaier, P. Uwer, S. Weinzierl, Phys. Rev. Lett. 98, 262002 (2007) [arXiv:hep-ph/0703120]CrossRefADSGoogle Scholar
  26. 26.
    T. Binoth, G. Heinrich, T. Gehrmann, P. Mastrolia, Phys. Lett. B 649, 422 (2007) [arXiv:hep-ph/0703311]CrossRefADSGoogle Scholar
  27. 27.
    G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)CrossRefADSGoogle Scholar
  28. 28.
    F. Bloch, A. Nordsieck, Phys. Rev. 52, 54 (1937)MATHCrossRefADSGoogle Scholar
  29. 29.
    T. Kinoshita, J. Math. Phys. 3, 650 (1962)MATHCrossRefADSGoogle Scholar
  30. 30.
    T.D. Lee, M. Nauenberg, Phys. Rev. 133, B1549 (1964)CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    H. Baer, J. Ohnemus, J.F. Owens, Phys. Rev. D 40, 2844 (1989)CrossRefADSGoogle Scholar
  32. 32.
    B.W. Harris, J.F. Owens, Phys. Rev. D 65, 094032 (2002) [arXiv:hep-ph/0102128]CrossRefADSGoogle Scholar
  33. 33.
    K. Fabricius, I. Schmitt, G. Kramer, G. Schierholz, Z. Phys. C 11, 315 (1981)CrossRefADSGoogle Scholar
  34. 34.
    G. Kramer, B. Lampe, Fortschr. Phys. 37, 161 (1989)CrossRefGoogle Scholar
  35. 35.
    W.T. Giele, E.W.N. Glover, Phys. Rev. D 46, 1980 (1992)CrossRefADSGoogle Scholar
  36. 36.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Nucl. Phys. B 403, 633 (1993) [arXiv:hep-ph/9302225]CrossRefADSGoogle Scholar
  37. 37.
    R.K. Ellis, D.A. Ross, A.E. Terrano, Nucl. Phys. B 178, 421 (1981)CrossRefADSGoogle Scholar
  38. 38.
    S. Frixione, Z. Kunszt, A. Signer, Nucl. Phys. B 467, 399 (1996) [arXiv:hep-ph/9512328]CrossRefADSGoogle Scholar
  39. 39.
    D.A. Kosower, Phys. Rev. D 57, 5410 (1998)CrossRefADSGoogle Scholar
  40. 40.
    J.M. Campbell, M.A. Cullen, E.W.N. Glover, Eur. Phys. J. C 9, 245 (1999)CrossRefADSGoogle Scholar
  41. 41.
    S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, Nucl. Phys. B 627, 189 (2002) [arXiv:hep-ph/0201036]MATHCrossRefADSGoogle Scholar
  42. 42.
    D.A. Kosower, Phys. Rev. D 71, 045016 (2005) [arXiv:hep-ph/0311272]CrossRefADSGoogle Scholar
  43. 43.
    G. Somogyi, Z. Trocsanyi, arXiv:hep-ph/0609041Google Scholar
  44. 44.
    D.A. Kosower, Phys. Rev. D 67, 116003 (2003) [arXiv:hep-ph/0212097]CrossRefADSGoogle Scholar
  45. 45.
    S. Weinzierl, JHEP 0303, 062 (2003) [arXiv:hep-ph/0302180]CrossRefADSGoogle Scholar
  46. 46.
    W.B. Kilgore, Phys. Rev. D 70, 031501 (2004) [arXiv:hep-ph/0403128]CrossRefADSGoogle Scholar
  47. 47.
    S. Frixione, M. Grazzini, JHEP 0506, 010 (2005) [arXiv:hep-ph/0411399]CrossRefADSGoogle Scholar
  48. 48.
    G. Somogyi, Z. Trocsanyi, V. Del Duca, JHEP 0506, 024 (2005) [arXiv:hep-ph/0502226]CrossRefADSGoogle Scholar
  49. 49.
    G. Somogyi, Z. Trocsanyi, V. Del Duca, JHEP 0701, 070 (2007) [arXiv:hep-ph/0609042]CrossRefADSGoogle Scholar
  50. 50.
    G. Somogyi, Z. Trocsanyi, JHEP 0701, 052 (2007) [arXiv:hep-ph/0609043]CrossRefADSGoogle Scholar
  51. 51.
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, JHEP 0509, 056 (2005) [arXiv:hep-ph/0505111]CrossRefADSGoogle Scholar
  52. 52.
    A. Daleo, T. Gehrmann, D. Maitre, JHEP 0704, 016 (2007)CrossRefADSGoogle Scholar
  53. 53.
    T. Gleisberg, S. Schumann, F. Krauss, in preparationGoogle Scholar
  54. 54.
    T. Gleisberg, S. Hoche, F. Krauss, A. Schalicke, S. Schumann, J.C. Winter, JHEP 0402, 056 (2004) [arXiv:hep-ph/0311263]CrossRefADSGoogle Scholar
  55. 55.
    T. Gleisberg, F. Krauss, K.T. Matchev, A. Schalicke, S. Schumann, G. Soff, JHEP 0309, 001 (2003) [arXiv:hep-ph/0306182]CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    T. Gleisberg, F. Krauss, C.G. Papadopoulos, A. Schaelicke, S. Schumann, Eur. Phys. J. C 34, 173 (2004) [arXiv:hep-ph/0311273]CrossRefADSGoogle Scholar
  57. 57.
    K. Hagiwara et al., Phys. Rev. D 73, 055005 (2006) [arXiv:hep-ph/0512260]CrossRefADSGoogle Scholar
  58. 58.
    P. De Causmaecker, R. Gastmans, W. Troost, T.T. Wu, Phys. Lett. B 105, 215 (1981)CrossRefADSGoogle Scholar
  59. 59.
    R. Kleiss, W.J. Stirling, Nucl. Phys. B 262, 235 (1985)CrossRefADSGoogle Scholar
  60. 60.
    A. Ballestrero, E. Maina, S. Moretti, Nucl. Phys. B 415, 265 (1994) [arXiv:hep-ph/9212246]CrossRefADSGoogle Scholar
  61. 61.
    F.A. Berends, R. Pittau, R. Kleiss, Comput. Phys. Commun. 85, 437 (1995) [arXiv:hep-ph/9409326]CrossRefADSGoogle Scholar
  62. 62.
    P.D. Draggiotis, A. van Hameren, R. Kleiss, Phys. Lett. B 483, 124 (2000) [arXiv:hep-ph/0004047]CrossRefADSGoogle Scholar
  63. 63.
    A. van Hameren, C.G. Papadopoulos, Eur. Phys. J. C 25, 563 (2002) [arXiv:hep-ph/0204055]MATHCrossRefADSGoogle Scholar
  64. 64.
    R. Kleiss, R. Pittau, Comput. Phys. Commun. 83, 141 (1994) [arXiv:hep-ph/9405257]CrossRefADSGoogle Scholar
  65. 65.
    G.P. Lepage, CLNS-80/447 (1980)Google Scholar
  66. 66.
    T. Ohl, Comput. Phys. Commun. 120, 13 (1999) [arXiv:hep-ph/9806432]MATHCrossRefADSGoogle Scholar
  67. 67.
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269, 432 (1991)CrossRefADSGoogle Scholar
  68. 68.
    S. Catani, Y.L. Dokshitzer, B.R. Webber, Phys. Lett. B 285, 291 (1992)CrossRefADSGoogle Scholar
  69. 69.
    S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993)CrossRefADSGoogle Scholar
  70. 70.
    G.C. Blazey et al., arXiv:hep-ex/0005012Google Scholar
  71. 71.
    DELPHI Collaboration, P. Abreu et al., Z. Phys. C 73, 11 (1996)CrossRefGoogle Scholar
  72. 72.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002) [arXiv:hep-ph/0201195]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität DresdenDresdenGermany
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamUK

Personalised recommendations