Advertisement

The European Physical Journal C

, Volume 53, Issue 4, pp 641–648 | Cite as

Quantum bound states around black holes

  • J. Grain
  • A. Barrau
Regular Article - Theoretical Physics

Abstract

Quantum mechanics in the vicinity of black holes is a fascinating field of theoretical physics. It involves both general relativity and particle physics, opening new eras to establish the principles of unified theories. In this article, we show that quantum bound states with no classical equivalent – as can easily be seen at the dominant monopolar order – should be formed around black holes for massive scalar particles. We qualitatively investigate some important physical consequences, in particular for the Hawking evaporation mechanism and the associated greybody factors.

Keywords

Black Hole Gordon Equation Trap Particle Orbital Quantum Number Equilibrium Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.G. Unruh, Phys. Rev. D 14, 870 (1976)CrossRefADSGoogle Scholar
  2. 2.
    K.D. Kokkotas, B.G. Schmidt, Living Rev. Relat. 2, 2 (1999)ADSMathSciNetGoogle Scholar
  3. 3.
    A. Ohashi, M. Sakagami, Class. Quantum Grav. 21, 3973 (2004)MATHCrossRefADSGoogle Scholar
  4. 4.
    S.R. Dolan, arXiv:0705.2880v1 [gr-qc]Google Scholar
  5. 5.
    P. Kanti, Int. J. Mod. Phys. A 19, 4899 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    L.E. Simone, C.M. Will, Class. Quantum Grav. 9, 963 (1992)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A.F. Heckler, Phys. Rev. D 55, 480 (1997)CrossRefADSGoogle Scholar
  9. 9.
    J. Grain, A. Barrau, Nucl. Phys. B 742, 253 (2006)MATHCrossRefADSGoogle Scholar
  10. 10.
    S. Iyer, C.M. Will, Phys. Rev. D 35, 3621 (1987)CrossRefADSGoogle Scholar
  11. 11.
    A.A. Starobinsky, Sov. Phys. JETP 37, 28 (1973)ADSGoogle Scholar
  12. 12.
    A.A. Starobinsky, S.M. Churilov, Sov. Phys. JETP 38, 1 (1973)ADSGoogle Scholar
  13. 13.
    D.N. Page, Phys. Rev. D 13, 870 (1976)CrossRefGoogle Scholar
  14. 14.
    D.N. Page, Phys. Rev. D 14, 3260 (1976)CrossRefADSGoogle Scholar
  15. 15.
    D.N. Page, Phys. Rev. D 16, 2402 (1977)CrossRefADSGoogle Scholar
  16. 16.
    C.M. Harris, P. Kanti, JHEP 310, 014 (2003)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    P. Kanti, J. Grain, A. Barrau, Phys. Rev. D 71, 104002 (2005)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    G. Duffy et al., JHEP 0509, 049 (2005)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    P. Kanti, C.M. Harris, Phys. Lett. B 633, 106 (2006)CrossRefADSGoogle Scholar
  20. 20.
    A. Barrau, J. Grain, S.O. Alexeyev, Phys. Lett. B 584, 114 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J. Grain, A. Barrau, P. Kanti, Phys. Rev. D 72, 104016 (2005)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    W.G. Unruh, Phys. Rev. D 14, 3251 (1976)CrossRefADSGoogle Scholar
  23. 23.
    A. Barrau, N. Ponthieu, Phys. Rev. D 69, 105021 (2004)CrossRefADSGoogle Scholar
  24. 24.
    B.J. Carr, astro-ph/0511743Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Laboratoire de Physique Subatomique et de Cosmologie de GrenobleUJF-CNRS-IN2P3-INPGGrenoble cedexFrance

Personalised recommendations