Advertisement

The European Physical Journal C

, Volume 52, Issue 4, pp 919–932 | Cite as

Dispersion representations for hard exclusive processes: beyond the Born approximation

Regular Article - Theoretical Physics

Abstract

Several hard exclusive scattering processes admit a description in terms of generalized parton distributions and perturbative hard-scattering kernels. Both the physical amplitude and the hard-scattering kernels fulfill dispersion relations. We give a detailed investigation of their consistency at all orders in perturbation theory. The results shed light on the information about generalized parton distributions that can be extracted from the real and imaginary parts of exclusive amplitudes. They also provide a practical consistency check for models of these distributions in which Lorentz invariance is not exactly satisfied.

Keywords

Dispersion Relation Subtraction Term Quark Distribution Deeply Virtual Compton Scattering Invariant Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kumerički, D. Müller, K. Passek-Kumerički, hep-ph/0703179Google Scholar
  2. 2.
    D.Y. Ivanov, A. Schäfer, L. Szymanowski, G. Krasnikov, Eur. Phys. J. C 34, 297 (2004) [hep-ph/0401131]CrossRefADSGoogle Scholar
  3. 3.
    J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997) [hep-ph/9611433]CrossRefADSGoogle Scholar
  4. 4.
    O.V. Teryaev, hep-ph/0510031Google Scholar
  5. 5.
    I.V. Anikin, O.V. Teryaev, arXiv:0704.2185 [hep-ph]Google Scholar
  6. 6.
    A. Freund, M. McDermott, M. Strikman, Phys. Rev. D 67, 036001 (2003) [hep-ph/0208160]CrossRefADSGoogle Scholar
  7. 7.
    X.D. Ji, J. Phys. G 24, 1181 (1998) [hep-ph/9807358]CrossRefADSGoogle Scholar
  8. 8.
    M. Diehl, Phys. Rep. 388, 41 (2003) [hep-ph/0307382]CrossRefADSGoogle Scholar
  9. 9.
    M.V. Polyakov, C. Weiss, Phys. Rev. D 60, 114017 (1999) [hep-ph/9902451]CrossRefADSGoogle Scholar
  10. 10.
    I.V. Musatov, A.V. Radyushkin, Phys. Rev. D 61, 074027 (2000) [hep-ph/9905376]CrossRefADSGoogle Scholar
  11. 11.
    O.V. Teryaev, Phys. Lett. B 510, 125 (2001) [hep-ph/0102303]MATHCrossRefADSGoogle Scholar
  12. 12.
    B.C. Tiburzi, Phys. Rev. D 70, 057504 (2004) [hep-ph/0405211]CrossRefADSGoogle Scholar
  13. 13.
    A.V. Belitsky, D. Müller, A. Kirchner, Nucl. Phys. B 629, 323 (2002) [hep-ph/0112108]CrossRefADSGoogle Scholar
  14. 14.
    J.C. Collins, A. Freund, Phys. Rev. D 59, 074009 (1999) [hep-ph/9801262]CrossRefADSGoogle Scholar
  15. 15.
    A. Freund, M.F. McDermott, Phys. Rev. D 65, 074008 (2002) [hep-ph/0106319]CrossRefADSGoogle Scholar
  16. 16.
    D. Müller, A. Schäfer, Nucl. Phys. B 739, 1 (2006) [hep-ph/0509204]MATHCrossRefGoogle Scholar
  17. 17.
    S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 50, 829 (2007) [hep-ph/0611290]CrossRefADSGoogle Scholar
  18. 18.
    A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1 (2005) [hep-ph/0504030]CrossRefADSGoogle Scholar
  19. 19.
    D.Y. Ivanov, L. Szymanowski, G. Krasnikov, JETP Lett. 80, 226 (2004) [hep-ph/0407207]CrossRefGoogle Scholar
  20. 20.
    N. Warkentin, M. Diehl, D.Y. Ivanov, A. Schäfer, hep-ph/0703148Google Scholar
  21. 21.
    E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B 383, 525 (1992)CrossRefADSGoogle Scholar
  22. 22.
    S.I. Ando, J.W. Chen, C.W. Kao, Phys. Rev. D 74, 094013 (2006) [hep-ph/0602200]CrossRefADSGoogle Scholar
  23. 23.
    M. Diehl, A. Manashov, A. Schäfer, Eur. Phys. J. A 31, 335 (2007) [hep-ph/0611101]CrossRefADSGoogle Scholar
  24. 24.
    M. Guidal, M. Vanderhaeghen, Phys. Rev. Lett. 90, 012001 (2003) [hep-ph/0208275]CrossRefADSGoogle Scholar
  25. 25.
    A.V. Belitsky, D. Müller, Phys. Rev. Lett. 90, 022001 (2003) [hep-ph/0210313]CrossRefADSGoogle Scholar
  26. 26.
    M. Guidal, Phys. Rev. D 68, 116005 (2003) [hep-ph/0307369]CrossRefGoogle Scholar
  27. 27.
    E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B 417, 61 (1994) [Erratum ibid. B 426, 245 (1994)]CrossRefADSGoogle Scholar
  28. 28.
    L. Mankiewicz, G. Piller, A.V. Radyushkin, Eur. Phys. J. C 10, 307 (1999) [hep-ph/9812467]ADSGoogle Scholar
  29. 29.
    K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001) [hep-ph/0106012]CrossRefADSGoogle Scholar
  30. 30.
    A.V. Belitsky, D. Müller, A. Kirchner, A. Schäfer, Phys. Rev. D 64, 116002 (2001) [hep-ph/0011314]CrossRefADSGoogle Scholar
  31. 31.
    P. Hoodbhoy, X.D. Ji, Phys. Rev. D 58, 054006 (1998) [hep-ph/9801369]CrossRefADSGoogle Scholar
  32. 32.
    A.V. Belitsky, D. Müller, Phys. Lett. B 486, 369 (2000) [hep-ph/0005028]CrossRefADSGoogle Scholar
  33. 33.
    M. Diehl, Eur. Phys. J. C 19, 485 (2001) [hep-ph/0101335]CrossRefADSGoogle Scholar
  34. 34.
    D.Y. Ivanov, B. Pire, L. Szymanowski, O.V. Teryaev, Phys. Lett. B 550, 65 (2002) [hep-ph/0209300]CrossRefADSGoogle Scholar
  35. 35.
    P. Hägler, Phys. Lett. B 594, 164 (2004) [hep-ph/0404138]CrossRefADSGoogle Scholar
  36. 36.
    B. Ermolaev, R. Kirschner, L. Szymanowski, Eur. Phys. J. C 7, 65 (1999) [hep-ph/9806439]ADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Theory GroupDeutsches Elektronen-Synchroton DESYHamburgGermany
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations