Skip to main content
Log in

Flavour structure of low-energy hadron-pair photoproduction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the process γγ→H12, where H1 and H2 are either mesons or baryons. The experimental findings for such quantities as the pp̄ and KSKS differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole–resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution, which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKS and the K+K- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρω→a subprocess in VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the φ component, and it is hence constrained. We give similar constraints to a number of other hadron-pair production channels. After writing down the scaling and pole–resonance contributions respectively, the direct summation of the two contributions is found to reproduce some salient features of the pp̄ and K+K- data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belle Collaboration, C.-C. Kuo et al., Phys. Lett. B 621, 41 (2005) [arXiv:hep-ex/0503006]

    Article  ADS  Google Scholar 

  2. C.-C. Kuo, talk at Belle τ/2γ meeting, Nagoya, Japan, 11–12 March 2004

  3. Belle Collaboration, K. Abe et al., Eur. Phys. J. C 32, 323 (2003) [arXiv:hep-ex/0309077]

    Article  ADS  Google Scholar 

  4. Belle Collaboration, H. Nakazawa et al., Phys. Lett. B 615, 39 (2005) [arXiv:hep-ex/0412058]

    Article  ADS  Google Scholar 

  5. V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973)

    Google Scholar 

  6. S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975)

    Article  ADS  Google Scholar 

  7. VENUS Collaboration, H. Hamasaki et al., Phys. Lett. B 407, 185 (1997)

    Article  ADS  Google Scholar 

  8. CLEO Collaboration, M. Artuso et al., Phys. Rev. D 50, 5484 (1994)

    Article  ADS  Google Scholar 

  9. L3 Collaboration, P. Achard et al., Phys. Lett. B 571, 11 (2003) [arXiv:hep-ex/0306017]

    Article  ADS  Google Scholar 

  10. TPC/Two-Gamma Collaboration, H. Aihara et al., Phys. Rev. Lett. 57, 404 (1986)

    Article  ADS  Google Scholar 

  11. ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 183 (1990)

    Article  Google Scholar 

  12. Belle Collaboration, W.T. Chen et al., arXiv:hep-ex/0609042

  13. M. Benayoun, V.L. Chernyak, Nucl. Phys. B 329, 285 (1990)

    Article  ADS  Google Scholar 

  14. V.L. Chernyak, Phys. Lett. B 640, 246 (2006)

    Article  ADS  Google Scholar 

  15. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981)

    Article  ADS  Google Scholar 

  16. See [15] and the listing under 5 therein

  17. M. Diehl, P. Kroll, C. Vogt, Phys. Lett. B 532, 99 (2002) [arXiv:hep-ph/0112274]

    Article  ADS  Google Scholar 

  18. M. Diehl, Eur. Phys. J. C 26, 567 (2003) [arXiv:hep-ph/0206288]

    Article  ADS  Google Scholar 

  19. See, for example, P.D.B. Collins, An introduction to Regge theory and high energy physics, (Cambridge University Press, 1977)

  20. A. Donnachie, H.G. Dosch, P.V. Landshoff, O. Nachtmann, Pomeron Physics and QCD (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  21. A. Donnachie, P.V. Landshoff, Nucl. Phys. B 231, 189 (1984)

    Article  ADS  Google Scholar 

  22. T. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000) [arXiv:hep-ph/9907491]

    ADS  Google Scholar 

  23. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  24. M.M. Nagels et al., Nucl. Phys. B 147, 189 (1979)

    Article  ADS  Google Scholar 

  25. S. Kanwar, R.C. Verma, M.P. Khanna, Prog. Theor. Phys. 62, 1152 (1979)

    Article  ADS  Google Scholar 

  26. K. Igi, Phys. Rev. Lett. 9, 76 (1962)

    Article  MATH  ADS  Google Scholar 

  27. R. Dolen, D. Horn, C. Schmid, Phys. Rev. Lett. 19, 402 (1967)

    Article  ADS  Google Scholar 

  28. K. Igi, S. Matsuda, Phys. Rev. Lett. 18, 625 (1967)

    Article  ADS  Google Scholar 

  29. A.A. Logunov, L.D. Soloviev, A.N. Tavkhelidze, Phys. Rev. Lett. B 24, 181 (1967)

    ADS  Google Scholar 

  30. K. Odagiri, Nucl. Phys. A 748, 168 (2005) [arXiv:hep-ph/0406267]

    Article  ADS  Google Scholar 

  31. G. Veneziano, Nuovo Cim. 57, 190 (1968)

    Article  ADS  Google Scholar 

  32. J.K. Storrow, Phys. Rep. 103, 317 (1984)

    Article  ADS  Google Scholar 

  33. L3 Collaboration, P. Achard et al., Phys. Lett. B 536, 24 (2002) [arXiv:hep-ex/0204025]

    Article  ADS  Google Scholar 

  34. CLEO Collaboration, S. Anderson et al., Phys. Rev. D 56, 2485 (1997) [arXiv:hep-ex/9701013]

    Article  ADS  Google Scholar 

  35. C.F. Berger, W. Schweiger, Eur. Phys. J. C 28, 249 (2003) [arXiv:hep-ph/0212066]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Odagiri.

Additional information

PACS

11.30.Hv; 12.40.-y; 12.40.Nn; 12.40.Vv; 13.66.Bc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odagiri, K., Verma, R. Flavour structure of low-energy hadron-pair photoproduction. Eur. Phys. J. C 52, 159–171 (2007). https://doi.org/10.1140/epjc/s10052-007-0337-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0337-0

Keywords

Navigation