Advertisement

The European Physical Journal C

, Volume 52, Issue 1, pp 159–171 | Cite as

Flavour structure of low-energy hadron-pair photoproduction

  • K. Odagiri
  • R.C. Verma
Regular Article - Theoretical Physics
  • 32 Downloads

Abstract

We consider the process γγ→H12, where H1 and H2 are either mesons or baryons. The experimental findings for such quantities as the pp̄ and KSKS differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole–resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution, which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKS and the K+K- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρω→a subprocess in VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the φ component, and it is hence constrained. We give similar constraints to a number of other hadron-pair production channels. After writing down the scaling and pole–resonance contributions respectively, the direct summation of the two contributions is found to reproduce some salient features of the pp̄ and K+K- data.

Keywords

Angular Distribution Integrate Cross Section Belle Collaboration Regge Amplitude Flavour Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belle Collaboration, C.-C. Kuo et al., Phys. Lett. B 621, 41 (2005) [arXiv:hep-ex/0503006]CrossRefADSGoogle Scholar
  2. 2.
    C.-C. Kuo, talk at Belle τ/2γ meeting, Nagoya, Japan, 11–12 March 2004Google Scholar
  3. 3.
    Belle Collaboration, K. Abe et al., Eur. Phys. J. C 32, 323 (2003) [arXiv:hep-ex/0309077]CrossRefADSGoogle Scholar
  4. 4.
    Belle Collaboration, H. Nakazawa et al., Phys. Lett. B 615, 39 (2005) [arXiv:hep-ex/0412058]CrossRefADSGoogle Scholar
  5. 5.
    V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973)Google Scholar
  6. 6.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975)CrossRefADSGoogle Scholar
  7. 7.
    VENUS Collaboration, H. Hamasaki et al., Phys. Lett. B 407, 185 (1997)CrossRefADSGoogle Scholar
  8. 8.
    CLEO Collaboration, M. Artuso et al., Phys. Rev. D 50, 5484 (1994)CrossRefADSGoogle Scholar
  9. 9.
    L3 Collaboration, P. Achard et al., Phys. Lett. B 571, 11 (2003) [arXiv:hep-ex/0306017]CrossRefADSGoogle Scholar
  10. 10.
    TPC/Two-Gamma Collaboration, H. Aihara et al., Phys. Rev. Lett. 57, 404 (1986)CrossRefADSGoogle Scholar
  11. 11.
    ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 183 (1990)CrossRefGoogle Scholar
  12. 12.
    Belle Collaboration, W.T. Chen et al., arXiv:hep-ex/0609042Google Scholar
  13. 13.
    M. Benayoun, V.L. Chernyak, Nucl. Phys. B 329, 285 (1990)CrossRefADSGoogle Scholar
  14. 14.
    V.L. Chernyak, Phys. Lett. B 640, 246 (2006)CrossRefADSGoogle Scholar
  15. 15.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981)CrossRefADSGoogle Scholar
  16. 16.
    See [15] and the listing under 5 thereinGoogle Scholar
  17. 17.
    M. Diehl, P. Kroll, C. Vogt, Phys. Lett. B 532, 99 (2002) [arXiv:hep-ph/0112274]CrossRefADSGoogle Scholar
  18. 18.
    M. Diehl, Eur. Phys. J. C 26, 567 (2003) [arXiv:hep-ph/0206288]CrossRefADSGoogle Scholar
  19. 19.
    See, for example, P.D.B. Collins, An introduction to Regge theory and high energy physics, (Cambridge University Press, 1977)Google Scholar
  20. 20.
    A. Donnachie, H.G. Dosch, P.V. Landshoff, O. Nachtmann, Pomeron Physics and QCD (Cambridge University Press, Cambridge, 2002)MATHGoogle Scholar
  21. 21.
    A. Donnachie, P.V. Landshoff, Nucl. Phys. B 231, 189 (1984)CrossRefADSGoogle Scholar
  22. 22.
    T. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000) [arXiv:hep-ph/9907491]ADSGoogle Scholar
  23. 23.
    Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  24. 24.
    M.M. Nagels et al., Nucl. Phys. B 147, 189 (1979)CrossRefADSGoogle Scholar
  25. 25.
    S. Kanwar, R.C. Verma, M.P. Khanna, Prog. Theor. Phys. 62, 1152 (1979)CrossRefADSGoogle Scholar
  26. 26.
    K. Igi, Phys. Rev. Lett. 9, 76 (1962)MATHCrossRefADSGoogle Scholar
  27. 27.
    R. Dolen, D. Horn, C. Schmid, Phys. Rev. Lett. 19, 402 (1967)CrossRefADSGoogle Scholar
  28. 28.
    K. Igi, S. Matsuda, Phys. Rev. Lett. 18, 625 (1967)CrossRefADSGoogle Scholar
  29. 29.
    A.A. Logunov, L.D. Soloviev, A.N. Tavkhelidze, Phys. Rev. Lett. B 24, 181 (1967)ADSGoogle Scholar
  30. 30.
    K. Odagiri, Nucl. Phys. A 748, 168 (2005) [arXiv:hep-ph/0406267]CrossRefADSGoogle Scholar
  31. 31.
    G. Veneziano, Nuovo Cim. 57, 190 (1968)CrossRefADSGoogle Scholar
  32. 32.
    J.K. Storrow, Phys. Rep. 103, 317 (1984)CrossRefADSGoogle Scholar
  33. 33.
    L3 Collaboration, P. Achard et al., Phys. Lett. B 536, 24 (2002) [arXiv:hep-ex/0204025]CrossRefADSGoogle Scholar
  34. 34.
    CLEO Collaboration, S. Anderson et al., Phys. Rev. D 56, 2485 (1997) [arXiv:hep-ex/9701013]CrossRefADSGoogle Scholar
  35. 35.
    C.F. Berger, W. Schweiger, Eur. Phys. J. C 28, 249 (2003) [arXiv:hep-ph/0212066]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Institute of PhysicsAcademia SinicaNankangTaiwan
  2. 2.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations