Skip to main content
Log in

The productions of the top-pions and top-Higgs associated with the charm quark at the hadron colliders

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the topcolor-assisted technicolor (TC2) model, the typical physical particles, top-pions and top-Higgs, are predicted and the existence of these particles could be regarded as robust evidence for the model. These particles are accessible at the Tevatron and LHC, and furthermore the flavor-changing (FC) feature of the TC2 model may provide us with a unique opportunity to probe them. In this paper, we study some interesting FC production processes of top-pions and top-Higgs particles at the Tevatron and LHC, i.e., cΠt - and cΠt 0(ht 0) productions. We find that the light charged top-pions are not favorable by the Tevatron experiments, and the Tevatron has little capability to probe the neutral top-pion and top-Higgs particles via these FC production processes. At LHC, however, the cross section can reach the level of 10–100 pb for cΠt - production and 10–100 fb for cΠt 0(ht 0) production. So one can expect that enough signals could be produced at the LHC experiments. Furthermore, the SM backgrounds should be clean due to the FC feature of the processes, and the FC decay modes Πt -→bc̄, Πt 0(ht 0)→tc̄ can provide us with the signal typical for the detection of the top-pions and top-Higgs particles. Therefore, one may have hope to find the signal of top-pions and top-Higgs particles with the running of LHC via these FC processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Rev. D 19, 1277 (1979)

    Article  ADS  Google Scholar 

  2. L. Susskind, Phys. Rev. D 20, 2619 (1979)

    Article  ADS  Google Scholar 

  3. C.T. Hill, Phys. Lett. B 345, 483 (1995)

    Article  ADS  Google Scholar 

  4. K. Lane, E. Eichten, Phys. Lett. B 352, 382 (1995)

    Article  ADS  Google Scholar 

  5. C.T. Hill, K. Lane, Phys. Lett. B 433, 96 (1998)

    Article  ADS  Google Scholar 

  6. K. Lane, Phys. Rev. D 54, 2204 (1996)

    Article  ADS  Google Scholar 

  7. G. Cvetic, Rev. Mod. Phys. 71, 513 (1999)

    Article  ADS  Google Scholar 

  8. G. Buchalla, G. Burdman, C.T. Hill, Phys. Rev. D 53, 5185 (1996)

    Article  ADS  Google Scholar 

  9. X.L. Wang, Q.P. Qiao, Q.L. Zhang, Phys. Rev. D 71, 095012 (2005)

    Article  ADS  Google Scholar 

  10. X.L. Wang, Y.L. Yang, B.Z. Li, Phys. Rev. D 69, 055002 (2004)

    Article  ADS  Google Scholar 

  11. X.L. Wang, B.Z. Li , Y.L. Yang, Phys. Rev. D 67, 035005 (2003)

    Article  ADS  Google Scholar 

  12. X.L. Wang, Y.L. Yang, B.Z. Li, L.D. Wan, Phys. Rev. D 66, 075013 (2002)

    Article  ADS  Google Scholar 

  13. X.L. Wang, N.H. Song, L.L. Yu, J. Phys. G 31, 1507 (2005)

    Article  ADS  Google Scholar 

  14. X.L. Wang, L.L. Du, W.N. Xu, Commun. Theor. Phys. 43, 133 (2005)

    Article  ADS  Google Scholar 

  15. C.X. Yue, Q.J. Xu, G.L. Liu, J.T. Li, Phys. Rev. D 63, 115002 (2001)

    Article  ADS  Google Scholar 

  16. X.L. Wang, X.X. Wang, Phys. Rev. D 72, 095012 (2005)

    Article  ADS  Google Scholar 

  17. A.K. Lerbovich, D. Rainwater, Phys. Rev. D 65, 055012 (2002)

    Article  ADS  Google Scholar 

  18. C.X. Yue, Z.J. Zong, L.L. Xu, J.X. Chen, Phys. Rev. D 73, 015006 (2002)

    Article  ADS  Google Scholar 

  19. X.L. Wang, L.L. Yu, N.H. Song, W.N. Xu, Mod. Phys. Lett. A 21, 2833 (2006)

    Article  ADS  Google Scholar 

  20. X.L. Wang, L.L. Yu, N.H. Song, X.X. Wang, F.C. Jiang, Commun. Theor. Phys. 45, 521 (2006)

    Article  ADS  Google Scholar 

  21. X.L. Wang, B.Z. Li, Y.L. Yang, Phys. Rev. D 68, 115003 (2003)

    Article  ADS  Google Scholar 

  22. X.L. Wang, Y.L. Yang, B.Z. Li, C.X. Yue, J.Y. Zhang, Phys. Rev. D 66, 075009 (2002)

    Article  ADS  Google Scholar 

  23. H.J. He, C.P. Yuan, Phys. Rev. Lett. 83, 28 (1999)

    Article  ADS  Google Scholar 

  24. G.R. Lu, F.R. Yin, X.L. Wang, L.D. Wan, Phys. Rev. D 68, 015002 (2003)

    Article  ADS  Google Scholar 

  25. G. Burdman, Phys. Rev. Lett. 83, 2888 (1999)

    Article  ADS  Google Scholar 

  26. J.J. Cao, Z.H. Xiong, J.M. Yang, Phys. Rev. D 67, 071701 (2003)

    Article  ADS  Google Scholar 

  27. C.X. Yue, Z.J. Zong, J. Phys. G 31, 401 (2005)

    Article  ADS  Google Scholar 

  28. W.N. Xu, X.L. Wang, Z.J. Xiao, hep-ph/0612063

  29. Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  30. X.L. Wang, W.N. Xu, L.L. Du, Commun. Theor. Phys. 41, 737 (2004)

    Article  Google Scholar 

  31. R.-D. Heuer, hep-ph/0106315

  32. J.A. Conley, J. Hewett, M.P. Le, Phys. Rev. D 72, 115014 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelei Wang.

Additional information

PACS

12.60.Nz; 14.80.Mz; 12.15.LK; 14.65.Ha

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Wang, X. & Xiao, Zj. The productions of the top-pions and top-Higgs associated with the charm quark at the hadron colliders. Eur. Phys. J. C 51, 891–897 (2007). https://doi.org/10.1140/epjc/s10052-007-0331-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0331-6

Keywords

Navigation