The European Physical Journal C

, Volume 51, Issue 1, pp 25–35 | Cite as

Study of the jet shape at 920 GeV/c in proton–nucleus interactions with HERA-B detector

Regular Article - Experimental Physics

Abstract

We performed a measurement of differential and integral jet shapes in proton-carbon, proton-tungsten and proton-aluminium collisions at 920 GeV/c proton momentum with the HERA-B detector at HERA for the jet transverse energies in the range 4 GeV<ET(jet)< 12 GeV. Jets were identified using the kT-clustering algorithm. The measurements were performed for the hardest jet in the event, directed towards the opposite side with respect to the trigger direction. Jets become narrower with increasing transverse energy and measured distributions agree well with predictions of the PYTHIA 6.2 model. We do not observe any significant difference in the jet shape for the carbon and the aluminium targets. Nevertheless, the transverse energy flow at small and large radii for the tungsten sample is slightly less than for light nuclei. This observation indicates some influence of the nuclear environment on the formation of jets in heavy nuclei, especially at lower transverse energies, 5 GeV<ET(jet)< 6 GeV.

Keywords

Transverse Momentum Transverse Energy Carbon Target Aluminium Target Tungsten Sample 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Akesson et al., Phys. Lett. B 128, 354 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    M. Banner et al., Phys. Lett. B 118, 203 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    G. Arnison et al., Phys. Lett. B 121, 115 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 62, 613 (1989)CrossRefGoogle Scholar
  5. 5.
    CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 63, 3020 (1989)Google Scholar
  6. 6.
    C. De Marzo et al., Nucl. Phys. B 211, 375 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    B.C. Brown et al., Phys. Rev. D 29, 1895 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    C. Stewart et al., Phys. Rev. D 42, 1385 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    G. Alverson et al., Phys. Rev. D 49, 3106 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    L.R. Cornell et al., Phys. Lett. B 150, 322 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    M.W. Arenton et al., Phys. Rev. D 31, 984 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Huth et al., FERMILAB-Conf-90/249-E [E-741/CDF]Google Scholar
  13. 13.
    S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Weber, Nucl. Phys. B 406, 187 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    S.D. Ellis, Z. Kunszt, D.E. Soper, Phys. Rev. Lett. 69, 3614 (1992)ADSGoogle Scholar
  16. 16.
    CDF Collaboration, F. Abe et al., Phys. Rev. D 45, 1448 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Catani, Y.L. Dokshitzer, M.H. Seymour, arXiv:hep-ph/9707338Google Scholar
  18. 18.
    G. Marchesini, arXiv:hep-ph/0410275Google Scholar
  19. 19.
    HERA-B Collaboration, I. Abt et al., Eur. Phys. J. C 29, 181 (2003) and references thereinADSCrossRefGoogle Scholar
  20. 20.
    K. Ehret et al., Nucl. Instrum. Methods A 446, 190 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    C. Bauer et al., Nucl. Instrum. Methods A 501, 39 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    W. Gradl et al., Nucl. Instrum. Methods A 461, 80 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    H. Albrecht et al., Nucl. Instrum. Methods A 541, 610 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    H. Albrecht et al., Nucl. Instrum. Methods A 555, 310 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    I. Ariño et al., Nucl. Instrum. Methods A 516, 445 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    G. Avoni et al., Nucl. Instrum. Methods A 461, 332 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    V. Eiges et al., Nucl. Instrum. Methods A 461, 104 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001) [LU TP 01-21, August 2001; arXiv: hep-ph/0108264]ADSCrossRefGoogle Scholar
  29. 29.
    H. Pi, An Event Generator for Interactions Between Hadrons and Nuclei – FRITIOF version 7.02. CERNLIB 97aGoogle Scholar
  30. 30.
    L. Apanasevich et al., hep-ex/9711017Google Scholar
  31. 31.
    L. Apanasevich et al., Phys. Rev. D 59, 074007 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    S. Eidelman et al., Phys. Lett. B 592, 1 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Moscow Physical Engineering InstituteMoscowRussia
  2. 2.Institute of Nuclear Physics of Moscow State UniversityMoscowRussia

Personalised recommendations