The European Physical Journal C

, Volume 50, Issue 4, pp 1013–1017 | Cite as

On the NCCS model of the quantum Hall fluid

Regular Article - Theoretical Physics


Area non-preserving transformations in the non-commutative plane are introduced with the aim to map the ν=1 integer quantum Hall effect (IQHE) state on the \(\nu=\frac{1}{2p+1}\) fractional quantum Hall effect (FQHE) states. Using the hydrodynamical description of the quantum Hall fluid, it is shown that these transformations are generated by vector fields satisfying the Gauss law in the interacting non-commutative Chern–Simons gauge theory, and the corresponding field-theory Lagrangian is reconstructed. It is demonstrated that the geometric transformations induce quantum-mechanical non-unitary similarity transformations, establishing the interplay between integral and fractional QHEs.


Geometric Transformation Dirac Bracket Hydrodynamical Description Lower Landau Level Lower Landau Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.K. Jain, Phys. Rev. Lett. 63, 199 (1989)CrossRefADSGoogle Scholar
  2. 2.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)CrossRefADSGoogle Scholar
  3. 3.
    P. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science Yeshiva University, New York, 1964)Google Scholar
  4. 4.
    G.V. Dunne, R. Jackiw, C.A. Trugenberger, Phys. Rev. D 41, 661 (1990)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    L. Susskind, The Quantum Hall Fluid and Non-Commutative Chern–Simons Field Theory, arXiv: hep-th/0101029Google Scholar
  6. 6.
    M. Eliashvili, G. Tsitsishvili, Int. J. Mod. Phys. B 14, 1429 (2000)ADSMathSciNetGoogle Scholar
  7. 7.
    M. Eliashvili, On the geometric formulation of the Chern–Simons theory of quantum Hall effect, in: Proc. Second Int. Meeting “Mathematical Methods in Modern Theoretical Physics”, SIMI-98, 1999, p. 125Google Scholar
  8. 8.
    M. Eliashvili, G. Tsitsishvili, Eur. Phys. J. C 32, 135 (2003)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsA. Razmadze Mathematical InstituteTbilisiGeorgia

Personalised recommendations