The European Physical Journal C

, Volume 50, Issue 4, pp 817–821 | Cite as

Quark flavour mixing and the exponential form of the Kobayashi–Maskawa matrix

Regular Article - Theoretical Physics

Abstract

The form of the mixing matrix of quarks is discussed. The exponential parameterisation of the Cabibbo–Kobayashi–Maskawa (CKM) matrix is identified as the most general form of the mixing matrix. Its properties are reviewed in the context of the unitarity requirement. A recurrence series representation of the exponential form of the mixing matrix that is easy to handle is obtained, allowing for a direct and simple method of calculation of the CKM matrix. The generation of the new parameterisations of the CKM matrix by the exponential form is demonstrated.

Keywords

Chebyshev Polynomial Exponential Form High Order Contribution Unitarity Requirement High Order Parameterisations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)CrossRefADSGoogle Scholar
  2. 2.
    A. Salam, Elementary Particle Theory, ed. by N. Svartholm (Almquist Forlag AB, Stockholm, 1968)Google Scholar
  3. 3.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961)CrossRefGoogle Scholar
  4. 4.
    P.W. Higgs, Phys. Lett. 12, 132 (1964)ADSGoogle Scholar
  5. 5.
    M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)CrossRefADSGoogle Scholar
  6. 6.
    Particle Data Group, W.-M. Yao et al., J. Phys. G: Nucl. Part. Phys. 33, 1 (2006)CrossRefADSGoogle Scholar
  7. 7.
    L.-L. Chau, W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984)CrossRefADSGoogle Scholar
  8. 8.
    H. Harari, M. Leurer, Phys. Lett. B 181, 123 (1986)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    H. Fritzsch, J. Plankl, Phys. Rev. D 35, 1732 (1987)CrossRefADSGoogle Scholar
  10. 10.
    F.J. Botella, L.-L. Chao, Phys. Lett. B 168, 97 (1986)CrossRefADSGoogle Scholar
  11. 11.
    N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)CrossRefADSGoogle Scholar
  12. 12.
    L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983)CrossRefADSGoogle Scholar
  13. 13.
    G. Dattoli, G. Maino, C. Mari, A. Torre, Nuovo Cim. A 105, 1127 (1992)ADSGoogle Scholar
  14. 14.
    G. Dattoli, L. Gianessi, C. Mari, Nuovo Cim. A 105, 1555 (1992)Google Scholar
  15. 15.
    G. Dattoli, Nuovo Cim. A 107, 1243 (1994)Google Scholar
  16. 16.
    F.R. Gantmakher, The Theory of Matrices (Chelsea, New York, 1959)Google Scholar
  17. 17.
    G. Dattoli, A. Torre, Nuovo Cim. A 108, 589 (1995)MathSciNetGoogle Scholar
  18. 18.
    G. Dattoli, E. Sabia, A. Torre, Nuovo Cim. A 109, 1425 (1996)Google Scholar
  19. 19.
    Z.Z. Xing, Phys. Rev. D 51, 3958 (1995)CrossRefADSGoogle Scholar
  20. 20.
    A.J. Buras, M.E. Lautenbacher, G. Ostermaier, Phys. Rev. D 50, 3433 (1994)CrossRefADSGoogle Scholar
  21. 21.
    E.P. Ricci, Sulle Potenze di una Matrice (ital.), in Rendiconti di Matematica (1), Vol. 9, Serie VI (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Gruppo Fisica Teorica e Matematica Applicata, Unita Tecnico Scientifica Tecnologie Fisiche Avanzante (FIS-MAT)ENEA – Centro Ricerche FrascatiFrascatiItaly
  2. 2.Dept. of Optics and Spectroscopy, Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations