Advertisement

The European Physical Journal C

, Volume 50, Issue 4, pp 999–1006 | Cite as

Non-perturbative calculations for the effective potential of the PT symmetric and non-Hermitian (-gφ4) field theoretical model

  • A.M. Shalaby
Regular Article - Theoretical Physics

Abstract

We investigate the effective potential of the PT symmetric (-gφ4) field theory, perturbatively as well as non-perturbatively. For the perturbative calculations, we first use normal ordering to obtain the first order effective potential, from which the predicted vacuum condensate vanishes exponentially as G→0+, in agreement with previous calculations. For the higher orders, we employ the invariance of the bare parameters under the change of the mass scale t to fix the transformed form totally equivalent to the original theory. The form so obtained up to G3 is new and shows that all the 1PI amplitudes are perturbative for both the \(G\ll1\) and the \(G\gg1\) region. For the intermediate region, we modified the fractal self-similar resummation method to have a unique resummation formula for all G values. This unique formula is necessary, because the effective potential is the generating functional for all the one-particle irreducible (1PI) amplitudes that can be obtained via ∂nE/∂bn, and thus we can obtain an analytic calculation of the 1PI amplitudes. Again, the resummed form of the effective potential is new and interpolates the effective potential between the perturbative regions. Moreover, the resummed effective potential agrees in spirit to a previous calculation concerning bound states.

Keywords

Effective Potential Vacuum Energy Perturbation Series Vacuum Condensate Lambert Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Bender, Peter N. Meisinger, H. Yang, Phys. Rev. D 63, 045001 (2001)CrossRefADSGoogle Scholar
  2. 2.
    C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    C.M. Bender, F. Cooper, P.N. Meisinger, V.M. Savage, Phys. Lett. A 259, 224 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    C.M. Bender, G.V. Dunne, J. Math. Phys. 40, 4616 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    E. Delabaere, F. Pham, Phys. Lett. A 250, 25 (1998)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    E. Delabaere, F. Pham, Phys. Lett. A 250, 29 (1998)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    E. Delabaere, D.T. Trinh, J. Phys. A 33, 8771 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    G.A. Mezincescu, J. Phys. A 33, 4911 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C.M. Bender, S. Boettcher, V.M. Savage, J. Math. Phys. 41, 6381 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    C.M. Bender, Q. Wang, J. Phys. A 34, 9835 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    K.C. Shin, University of Illinois, preprintGoogle Scholar
  13. 13.
    C.M. Bender, E.J. Weniger, J. Math. Phys. 42, 2167 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    C.M. Bender, G.V. Dunne, P.N. Meisinger, M. Simsek, Phys. Lett. A 281, 311 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    P. Dorey, C. Dunning, R. Tateo, hep-th/0103051Google Scholar
  16. 16.
    C.M. Bender, M. Berry, P.N. Meisinger, V.M. Savage, M. Simsek, J. Phys. A 34, L31 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    C.M. Bender, J.-H. Chen, K.A. Milton, J. Phys. A 39, 1657 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    C.M. Bender, S. Boettcher, H.F. Jones, P.N. Meisinger, M. Simsek, Phys. Lett. A 291, 197 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    S. Gluzman, V.I. Yukalov, Phys. Rev. E 55, 3983 (1997)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    E.P. Yukalova, V.I. Yukalov, Phys. Lett. A 115, 27 (1993)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    V.I. Yukalov, Int. J. Theor. Phys. 28, 1237 (1989)MATHCrossRefGoogle Scholar
  22. 22.
    V.I. Yukalov, Phys. Rev. A 42, 3324 (1990)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    V.I. Yukalov, Physica A 167, 833 (1990)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    V.I. Yukalov, Nuovo Cim. A 103, 1577 (1990)ADSGoogle Scholar
  25. 25.
    V.I. Yukalov, Proc. Lebedev Phys. Inst. 188, 297 (1991)Google Scholar
  26. 26.
    V.I. Yukalov, J. Math. Phys. 32, 1235 (1991)MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    S. Gluzman, V.I. Yukalov, Phys. Rev. E 55, 6552 (1997)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    S. Coleman, Phys. Rev. D 11, 2088 (1975)CrossRefADSGoogle Scholar
  29. 29.
    M. Dineykhan, G.V. Efimov, G. Ganbold, S.N. Nedelko, Lect. Notes Phys. 26, 1 (1995)CrossRefGoogle Scholar
  30. 30.
    M.E. Peskin, D.V. Schroeder, An Introduction to the Quantum Field Theory (Addison-Wesley, Reading, MA, 1995)Google Scholar
  31. 31.
    C. Caratheodory, Theory of Functions of a Complex Variable (A.M.S. Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, 1954)Google Scholar
  32. 32.
    M. Kaku, Quantum Field Theory, a Modern Introduction (Oxford University Press, New York, Oxford, 1993)Google Scholar
  33. 33.
    A.M. Shalaby, Czech. J. Phys. 56, 1033 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    P.M. Stevenson, Phys. Rev. D 32, 1389 (1985)CrossRefADSGoogle Scholar
  35. 35.
    W.-F. Lu, C.K. Kim, J. Phys. A 35, 393 (2000)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    S.J. Chang, Phys. Rev. D 12, 1071 (1975)CrossRefADSGoogle Scholar
  37. 37.
    J.C. Collins, Renormalization (Cambridge UniversityPress, Cambridge, 1984)MATHGoogle Scholar
  38. 38.
    E. Brezin, J.C. Le Guillou, J. Zinn-Justin, Phys. Rev. D 15, 1544 (1977)CrossRefADSGoogle Scholar
  39. 39.
    E. Brezin, J.C. Le Guillou, J. Zinn-Justin, Phys. Rev. D 15, 1558 (1977)CrossRefADSGoogle Scholar
  40. 40.
    H. Kleinert, S. Thoms, W. Janke, Phys. Rev. A 55, 915 (1996)CrossRefADSGoogle Scholar
  41. 41.
    G.A. Baker, P. Graves-Moris, Padé Approximants (Cambridge University, Cambridge, 1996)MATHGoogle Scholar
  42. 42.
    G.A. Baker, G.S. Rashbrooke, H.E. Gilbert, Phys. Rev. A 135, 1272 (1964)ADSGoogle Scholar
  43. 43.
    R.E. Shafer, SIAM J. Numer. Anal. 11, 447 (1974)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    A.V. Sergeev, J. Phys. A 28, 4157 (1995)MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    V.I. Yukalov, Mod. Phys. Lett. B 14, 791 (2000)MATHCrossRefADSGoogle Scholar
  46. 46.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983)Google Scholar
  47. 47.
    H. Kröger, Phys. Rep. 323, 81 (2000)CrossRefMathSciNetGoogle Scholar
  48. 48.
    V.I. Yukalov, S. Gluzman, Phys. Rev. E 55, 6552 (1997)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsThe British University in EgyptEl Sherouk CityEgypt

Personalised recommendations