The European Physical Journal C

, Volume 50, Issue 3, pp 691–700 | Cite as

Canonical quantization of so-called non-Lagrangian systems

Regular Article - Theoretical Physics

Abstract

We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler–Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler–Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge.

Keywords

Poisson Bracket Action Principle Lagrange Function Hamiltonian Formulation Jacobi Identity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.G. Kupriyanov, S.L. Lyakhovich, A.A. Sharapov, J. Phys. A 38, 8039 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    P.A.M. Dirac, Proc. R. Soc. London A 133, 60 (1931)MATHADSGoogle Scholar
  3. 3.
    J. Douglas, Trans. Am. Math. Soc. 50, N71 (1941)CrossRefGoogle Scholar
  4. 4.
    V.V. Dodonov, V.I. Man’ko, V.D. Skarzhinsky, Arbitrariness in the choice of action and quantization of the given classical equations of motion, preprint of P.N. Lebedev Physical Institute (1978)Google Scholar
  5. 5.
    W. Sarlet, J. Phys. A Math. Gen. 15, 1503 (1982)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    P. Havas, Actra. Phys. Aust. 38, 145 (1973)Google Scholar
  7. 7.
    R. Santilli, Ann. Phys. (New York) 103, 354 (1977)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. Hojman, L. Urrutia, J. Math. Phys. 22, 1896 (1981)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    M. Henneaux, Ann. Phys. 140, 45 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    V.G. Kupriyanov, Int. J. Theor. Phys. 45, 1129 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Henneaux, L. Sheplley, J. Math. Phys. 23, 2101 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. Cislo, J. Lopuzanski, J. Math. Phys. 42, 5163 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    P. Tempesta, E. Alfinito, R. Leo, G. Soliani, J. Math. Phys. 43, 3583 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990)MATHGoogle Scholar
  15. 15.
    D.M. Gitman, S.L. Lyakhovich, M.D. Noskov, I.V. Tyutin, Sov. Phys. J. 3, 243 (1986)CrossRefGoogle Scholar
  16. 16.
    D.M. Gitman, I.V. Tyutin, Nucl. Phys. B 630, 509 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    F.A. Berezin, M.A. Shubin, Schrödinger Equation (Kluwer, New York, Amsterdam, 1991)MATHGoogle Scholar
  18. 18.
    H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969)CrossRefMathSciNetGoogle Scholar
  19. 19.
    J.K. Kim, S.P. Kim, J. Phys. A 32, 2711 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    H. Kim, J. Yee, Phys. Rev. A 66, 032117 (2002)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    K.H. Yeon, C.I. Um, T.F. George, Phys. Rev. A 68, 052108 (2003)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    H. Bateman, Phys. Rev. 38, 815 (1931)MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    E. Kanai, Prog. Theor. Phys. 3, 440 (1948)CrossRefADSGoogle Scholar
  24. 24.
    I.R. Senitzky, Phys. Rev. 119, 670 (1960)MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    R.P. Feynman, F.L. Vernon, Ann. Phys. 24, 118 (1963)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    H. Haken, Rev. Mod. Phys. 47, 68 (1975)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    H. Dekker, Phys. Rev. A 16, 2116 (1977)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    A. Caldeira, A. Leggett, Physica A 121, 587 (1983)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    I.A. Pedrosa, B. Baseia, Phys. Rev. D 30, 765 (1984)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    D. Walls, G. Miburn, Phys. Rev. A 31, 2403 (1985)CrossRefADSGoogle Scholar
  31. 31.
    H. Grabert, P. Shramm, G. Ingold, Phys. Rep. 168, 115 (1988)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    L.H. Yu, C.-P. Sun, Phys. Rev. A 49, 592 (1994)CrossRefADSGoogle Scholar
  33. 33.
    I. Joichi, S. Matsumoto, M. Yoshimura, Prog. Theor. Phys. 98, 9 (1997)CrossRefADSGoogle Scholar
  34. 34.
    M. Rosenau, A. Caldeira, S. Dutra, H. Westfahl, Phys. Rev. A 61, 022107 (2000)CrossRefADSGoogle Scholar
  35. 35.
    W.E. Brittin, Phys. Rev. 77, 396 (1950)MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    N.A. Lemos, Phys. Rev. D 24, 2338 (1981)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    R. Hasse, J. Math. Phys. 16, 2005 (1975)CrossRefADSGoogle Scholar
  38. 38.
    D.C. Khandekar, S.V. Lavande, J. Math. Phys. 20, 1870 (1979)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    H. Dekker, Phys. Rep. 80, 1 (1981)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    E. Celeghini, M. Rasetti, G. Vitello, Ann. Phys. 215, 156 (1992)CrossRefADSGoogle Scholar
  41. 41.
    R. Banerjee, P. Mukherjee, J. Phys. A 35, 5591 (2002)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    M. Blasone, P. Jizba, Ann. Phys. 312, 354 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    D. Chruscinski, Ann. Phys. 321, 840 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    D. Chruscinski, Ann. Phys. 321, 854 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon, Oxford, 1962)Google Scholar
  46. 46.
    V.L. Ginzburg, Theoretical Physics and Astrophysics: Aditional Chapters (Nauka, Moscow, 1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Physics DepartmentTomsk State UniversityTomskRussia

Personalised recommendations