Advertisement

The European Physical Journal C

, Volume 50, Issue 3, pp 593–601 | Cite as

Exploiting the equivalence of reggeon field theory in zero transverse dimensions and reaction–diffusion processes

  • S. Bondarenko
  • L. Motyka
  • A.H. Mueller
  • A.I. Shoshi
  • B.-W. Xiao
Regular Article - Theoretical Physics

Abstract

The reggeon field theory in zero transverse dimensions is investigated. Two versions of the theory are considered: one that allows for at most triple pomeron interactions and the other that embodies an additional 2→2 quartic reggeon coupling. The behavior of the scattering amplitude at asymptotic rapidities is obtained in both cases. In an s-channel picture of the high energy scattering both models can be viewed as reaction–diffusion processes. We derive known results in reggeon field theory rather easily using the reaction–diffusion formalism. We find that some results which are surprising from the reggeon field theory point of view turn out to have a simple interpretation from the reaction–diffusion point of view.

Keywords

Transverse Dimension Factorial Moment Regular Singular Point Boost Invariance Triple Pomeron Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976) [Yad. Fiz. 23, 642 (1976)]Google Scholar
  2. 2.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977) [Zh. Eksp. Teor. Fiz. 72, 377 (1977)]MathSciNetGoogle Scholar
  3. 3.
    I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) [Yad. Fiz. 28, 1597 (1978)]Google Scholar
  4. 4.
    L.N. Lipatov, Phys. Rep. 286, 131 (1997)CrossRefADSGoogle Scholar
  5. 5.
    L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)CrossRefADSGoogle Scholar
  6. 6.
    J. Bartels, Z. Phys. C 60, 471 (1993)CrossRefGoogle Scholar
  7. 7.
    J. Bartels, M. Wüsthoff, Z. Phys. C 66, 157 (1995)CrossRefGoogle Scholar
  8. 8.
    J. Bartels, C. Ewerz, JHEP 9909, 026 (1999)CrossRefADSGoogle Scholar
  9. 9.
    C. Ewerz, JHEP 0104, 031 (2001)CrossRefADSGoogle Scholar
  10. 10.
    M.A. Braun, Phys. Lett. B 483, 115 (2000)CrossRefADSGoogle Scholar
  11. 11.
    M.A. Braun, Eur. Phys. J. C 33, 113 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M.A. Braun, Phys. Lett. B 632, 297 (2006)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. Bondarenko, L. Motyka, arXiv:hep-ph/0605185Google Scholar
  14. 14.
    A.H. Mueller, Nucl. Phys. B 415, 373 (1994)CrossRefADSGoogle Scholar
  15. 15.
    A.H. Mueller, B. Patel, Nucl. Phys. B 425, 471 (1994)CrossRefADSGoogle Scholar
  16. 16.
    A.H. Mueller, Nucl. Phys. B 437, 107 (1995)CrossRefADSGoogle Scholar
  17. 17.
    I. Balitsky, Nucl. Phys. B 463, 99 (1996)CrossRefADSGoogle Scholar
  18. 18.
    J. Jalilian-Marian, A. Kovner, H. Weigert, Phys. Rev. D 59, 014015 (1999)CrossRefADSGoogle Scholar
  19. 19.
    J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 014014 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000)CrossRefADSGoogle Scholar
  22. 22.
    E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 692, 583 (2001)MATHCrossRefADSGoogle Scholar
  23. 23.
    E. Iancu, A. Leonidov, L.D. McLerran, Phys. Lett. B 510, 133 (2001)MATHCrossRefADSGoogle Scholar
  24. 24.
    E. Iancu, L.D. McLerran, Phys. Lett. B 510, 145 (2001)MATHCrossRefADSGoogle Scholar
  25. 25.
    E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 703, 489 (2002)MATHCrossRefADSGoogle Scholar
  26. 26.
    A.H. Mueller, A.I. Shoshi, Nucl. Phys. B 692, 175 (2004)MATHCrossRefADSGoogle Scholar
  27. 27.
    E. Iancu, A.H. Mueller, S. Munier, Phys. Lett. B 606, 342 (2005)CrossRefADSGoogle Scholar
  28. 28.
    E. Levin, M. Lublinsky, Phys. Lett. B 607, 131 (2005)CrossRefADSGoogle Scholar
  29. 29.
    E. Iancu, D.N. Triantafyllopoulos, Nucl. Phys. A 756, 419 (2005)CrossRefADSGoogle Scholar
  30. 30.
    A.H. Mueller, A.I. Shoshi, S.M.H. Wong, Nucl. Phys. B 715, 440 (2005)MATHCrossRefADSGoogle Scholar
  31. 31.
    E. Levin, M. Lublinsky, Nucl. Phys. A 763, 172 (2005)CrossRefADSGoogle Scholar
  32. 32.
    E. Iancu, D.N. Triantafyllopoulos, Phys. Lett. B 610, 253 (2005)ADSGoogle Scholar
  33. 33.
    E. Iancu, G. Soyez, D.N. Triantafyllopoulos, Nucl. Phys. A 768, 194 (2006)CrossRefADSGoogle Scholar
  34. 34.
    D.N. Triantafyllopoulos, Acta Phys. Pol. B 36, 3593 (2005)ADSGoogle Scholar
  35. 35.
    D. Amati, L. Caneschi, R. Jengo, Nucl. Phys. B 101, 397 (1975)CrossRefADSGoogle Scholar
  36. 36.
    V. Alessandrini, D. Amati, R. Jengo, Nucl. Phys. B 108, 425 (1976)CrossRefADSGoogle Scholar
  37. 37.
    R. Jengo, Nucl. Phys. B 108, 447 (1976)CrossRefADSGoogle Scholar
  38. 38.
    D. Amati, M. Le Bellac, G. Marchesini, M. Ciafaloni, Nucl. Phys. B 112, 107 (1976)CrossRefADSGoogle Scholar
  39. 39.
    M. Ciafaloni, M. Le Bellac, G.C. Rossi, Nucl. Phys. B 130, 388 (1977)CrossRefADSGoogle Scholar
  40. 40.
    M. Ciafaloni, Nucl. Phys. B 146, 427 (1978)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    P. Rembiesa, A.M. Staśto, Nucl. Phys. B 725, 251 (2005)MATHCrossRefADSGoogle Scholar
  42. 42.
    A. Kovner, M. Lublinsky, Nucl. Phys. A 767, 171 (2006)CrossRefADSGoogle Scholar
  43. 43.
    A.I. Shoshi, B.W. Xiao, Phys. Rev. D 73, 094014 (2006)CrossRefADSGoogle Scholar
  44. 44.
    M. Kozlov, E. Levin, arXiv:hep-ph/0604039Google Scholar
  45. 45.
    A.I. Shoshi, B.W. Xiao, arXiv:hep-ph/0605282Google Scholar
  46. 46.
    J.P. Blaizot, E. Iancu, D.N. Triantafyllopoulos, arXiv:hep-ph/0606253Google Scholar
  47. 47.
    P. Grassberger, K. Sundermeyer, Phys. Lett. B 77, 220 (1978)CrossRefADSGoogle Scholar
  48. 48.
    P. Grassberger, Nucl. Phys. B 163, 261 (1980)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. Bondarenko
    • 1
  • L. Motyka
    • 2
    • 3
  • A.H. Mueller
    • 4
  • A.I. Shoshi
    • 5
  • B.-W. Xiao
    • 4
  1. 1.II Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany
  2. 2.DESY Theory GroupHamburgGermany
  3. 3.Institute of PhysicsJagellonian UniversityKrakówPoland
  4. 4.Physics DepartmentColumbia UniversityNew YorkUSA
  5. 5.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations