Skip to main content
Log in

Second-order corrections to neutrino two-flavor oscillation parameters in the wave packet approach

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

We report about an analytic study involving the intermediate wave packet formalism for quantifying the physically relevant information which appears in the neutrino two-flavor conversion formula and helping us to obtain more precise limits and ranges for neutrino flavor oscillation. By following the sequence of analytic approximations where we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy, we point out a residual time-dependent phase which, coupled with the spreading/slippage effects, can subtly modify the neutrino-oscillation parameters and limits. Such second-order effects are usually ignored in the relativistic wave packet treatment, but they present an evident dependence on the propagation regime so that some small modifications to the oscillation pattern, even in the ultra-relativistic limit, can be quantified. These modifications are implemented in the confrontation with the neutrino-oscillation parameter range (mass-squared difference Δm2 and the mixing angle θ) where we assume the same wave packet parameters previously noticed in the literature in a kind of toy model for some reactor experiments. Generically speaking, our analysis parallels the recent experimental purposes which are concerned with higher precision parameter measurements. To summarize, we show that the effectiveness of a more accurate determination of Δm2 and θ depends on the wave packet width a and on the averaged propagating energy flux Ē which still correspond to open variables for some classes of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zuber, Phys. Rep. 305, 295 (1998)

    Article  Google Scholar 

  2. W.M. Alberico, S.M. Bilenky, Phys. Part. Nucl. 35, 297 (2004)

    Google Scholar 

  3. R.D. McKeown, P. Vogel, Phys. Rep. 395, 315 (2004)

    Article  ADS  Google Scholar 

  4. M. Beuthe, Phys. Rep. 375, 105 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Giunti, C.W. Kim, Phys. Rev. D 58, 017301 (1998)

    Article  ADS  Google Scholar 

  6. M. Zralek, Acta Phys. Pol. B 29, 3925 (1998)

    ADS  Google Scholar 

  7. A.E. Bernardini, S. De Leo, Phys. Rev. D 71, 076008-1 (2005)

    Article  ADS  Google Scholar 

  8. M. Blasone, G. Vitiello, Ann. Phys. 244, 283 (1995)

    Article  ADS  Google Scholar 

  9. C. Giunti, JHEP 0211, 017 (2002)

    Article  Google Scholar 

  10. M. Blasone, P.P. Pacheco, H.W. Tseung, Phys. Rev. D 67, 073011 (2003)

    Article  ADS  Google Scholar 

  11. PDG Collaboration, L. Alvarez-Gaumé et al., Phys. Lett. B 592, 451 (2004)

    Google Scholar 

  12. B. Kayser, Phys. Rev. D 24, 110 (1981)

    Article  ADS  Google Scholar 

  13. B. Kayser, F. Gibrat-Debu, F. Perrier, The Physics of Massive Neutrinos (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  14. PDG Collaboration, L. Alvarez-Gaumé et al., Phys. Lett. B 592, 145 (2004)

    Google Scholar 

  15. S. De Leo, C.C. Nishi, P. Rotelli, Int. J. Mod. Phys. A 19, 677 (2004)

    Article  ADS  Google Scholar 

  16. J. Rich, Phys. Rev. D 48, 4318 (1993)

    Article  ADS  Google Scholar 

  17. J. Field, Eur. Phys. J. C 30, 305 (2003)

    Article  ADS  Google Scholar 

  18. W. Grimus, P. Stockinger, S. Mohanty, Phys. Rev. D 59, 013011 (1999)

    Article  ADS  Google Scholar 

  19. A.E. Bernardini, S. De Leo, Phys. Rev. D 70, 053010 (2004)

    Article  ADS  Google Scholar 

  20. J.C. Bahcall, C. Penaã-Garay, JHEP 0311, 004 (2003)

    Article  ADS  Google Scholar 

  21. A. Bandyopadhyay, S. Choubey, S. Goswani, Phys. Rev. D 67, 113011 (2003)

    Article  ADS  Google Scholar 

  22. A. Bandyopadhyay et al., Phys. Lett. B 583, 134 (2004)

    Article  ADS  Google Scholar 

  23. K. Kiers, S. Nussinov, N. Weiss, Phys. Rev. D 53, 537 (1996)

    Article  ADS  Google Scholar 

  24. W. Grimus, P. Stockinger, Phys. Rev. D 54, 3414 (1996)

    Article  ADS  Google Scholar 

  25. KamLAND Collaboration, F. Boehm et al., Phys. Rev. D 64, 112001 (2001)

    Article  ADS  Google Scholar 

  26. K. Egushi et al., Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  27. Superkamiokande Collaboration, S. Fukuda et al., Phys. Lett. B 537, 179 (2002)

    Article  Google Scholar 

  28. Superkamiokande Collaboration, S. Fukuda et al., Phys. Rev. Lett. 86, 5651 (2001)

    Article  ADS  Google Scholar 

  29. Superkamiokande Collaboration, S. Fukuda et al., Phys. Rev. Lett. 85, 3999 (2000)

    Article  ADS  Google Scholar 

  30. SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett 89, 011302 (2002)

    Article  ADS  Google Scholar 

  31. SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett 89, 011301 (2002)

    Article  ADS  Google Scholar 

  32. SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett 87, 071301 (2001)

    Article  ADS  Google Scholar 

  33. J.N. Bahcall, M.H. Pinsonneault, S. Basu, Astrophys. J. 555, 990 (2001)

    Article  ADS  Google Scholar 

  34. S. Fukuda et al., Phys. Rev. Lett. 81, 1562 (2000)

    Article  ADS  Google Scholar 

  35. M. Ambrosio et al., Phys. Lett. B 434, 451 (1998)

    Article  ADS  Google Scholar 

  36. A.V. Derbin, O.Y. Smirnov, O.A. Zaimidoroga, Phys. Atom. Nucl. 67, 2066 (2004)

    Article  Google Scholar 

  37. C. Athanassopoulos et al., Phys. Rev. Lett 81, 1774 (1998)

    Article  ADS  Google Scholar 

  38. A. Aguilar et al., Phys. Rev. D 64, 112007 (2001)

    Article  ADS  Google Scholar 

  39. B. Armbruster et al., Phys. Rev. D 65, 112007 (2002)

    Article  ADS  Google Scholar 

  40. C.W. Kim, A. Pevsner, Neutrinos in Physics and Astrophysics (Harwood Academic Publishers, Chur, 1993)

    Google Scholar 

  41. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  42. L. Wolfenstein, Phys. Rev. D 20, 2634 (1979)

    Article  ADS  Google Scholar 

  43. S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1986)

    Google Scholar 

  44. S.P. Mikheyev, A.Y. Smirnov, Nuovo Cim. C 9, 17 (1986)

    Article  ADS  Google Scholar 

  45. A.E. Bernardini, S. De Leo, Eur. Phys. J. C 37, 471 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Bernardini.

Additional information

PACS

02.30.Mv; 03.65.Pm; 14.60.Pq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardini, A., Guzzo, M. & Torres, F. Second-order corrections to neutrino two-flavor oscillation parameters in the wave packet approach. Eur. Phys. J. C 48, 613–623 (2006). https://doi.org/10.1140/epjc/s10052-006-0032-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0032-6

Keywords

Navigation