Multi-photon signatures at the Fermilab Tevatron

Theoretical Physics

Abstract

Fermiophobic Higgs bosons (hf) exhibiting large branching ratios for decay to two photons can arise in models with two or more scalar doublets and/or triplets. In such models the conventional production mechanisms at hadron colliders, which rely on the hfVV coupling (V=W,Z), may be rendered ineffective due to severe mixing angle suppression. In this scenario, double hf production may proceed via the complementary mechanism qq’→H±hf with subsequent decay H±→hfW*, leading to events with up to four photons. We perform a simulation of the detection prospects of hf in the multi-photon (>3) channel at the Fermilab Tevatron and show that a sizeable region of the (m,mhf) parameter space can be probed during Run II.

Keywords

Higgs Boson Hadron Collider Higgs Mass Vacuum Expectation Value Standard Model Background 

References

  1. 1.
    T.J. Weiler, Proceedings of the 8th Vanderbilt Int. Conf. on High Energy Physics (Nashville, TN, October 8–10, 1987), ed. by J. Brau, R. Panvini (World Scientific, Singapore, 1988), p. 219Google Scholar
  2. 2.
    H.E. Haber, G.L. Kane, T. Sterling, Nucl. Phys. B 161, 493 (1979)CrossRefADSGoogle Scholar
  3. 3.
    J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs Hunter’s Guide (Addison–Wesley, Reading MA, 1989)Google Scholar
  4. 4.
    H. Georgi, M. Machacek, Nucl. Phys. B 262, 463 (1985)CrossRefADSGoogle Scholar
  5. 5.
    M.S. Chanowitz, M. Golden, Phys. Lett. B 165, 105 (1985)CrossRefADSGoogle Scholar
  6. 6.
    A. Stange, W.J. Marciano, S. Willenbrock, Phys. Rev. D 49, 1354 (1994)CrossRefADSGoogle Scholar
  7. 7.
    M.A. Diaz, T.J. Weiler, arXiv:hep-ph/9401259Google Scholar
  8. 8.
    V.D. Barger, N.G. Deshpande, J.L. Hewett, T.G. Rizzo, arXiv:hep-ph/9211234, in Argonne 1993, Physics at current accelerators and supercolliders* 437–442Google Scholar
  9. 9.
    H. Pois, T.J. Weiler, T.C. Yuan, Phys. Rev. D 47, 3886 (1993)CrossRefADSGoogle Scholar
  10. 10.
    A.G. Akeroyd, Phys. Lett. B 368, 89 (1996)CrossRefADSGoogle Scholar
  11. 11.
    A. Barroso, L. Brucher, R. Santos, Phys. Rev. D 60, 035005 (1999)CrossRefADSGoogle Scholar
  12. 12.
    L. Brucher, R. Santos, Eur. Phys. J. C 12, 87 (2000)ADSGoogle Scholar
  13. 13.
    OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B 544, 44 (2002)CrossRefADSGoogle Scholar
  14. 14.
    DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 507, 89 (2001)CrossRefADSGoogle Scholar
  15. 15.
    DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C 35, 313 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    ALEPH Collaboration, A. Heister et al., Phys. Lett. B 544, 16 (2002)CrossRefADSGoogle Scholar
  17. 17.
    L3 Collaboration, P. Achard et al., Phys. Lett. B 534, 28 (2002)CrossRefADSGoogle Scholar
  18. 18.
    L3 Collaboration, P. Achard et al., Phys. Lett. B 568, 191 (2003)CrossRefADSGoogle Scholar
  19. 19.
    DO Collaboration, B. Abbott et al., Phys. Rev. Lett. 82, 2244 (1999)CrossRefADSGoogle Scholar
  20. 20.
    CDF Collaboration, T. Affolder et al., Phys. Rev. D 64, 092002 (2001)CrossRefADSGoogle Scholar
  21. 21.
    S. Mrenna, J. Wells, Phys. Rev. D 63, 015006 (2001)CrossRefADSGoogle Scholar
  22. 22.
    D0 Collaboration, V.M. Abazov et al., arXiv:hep-ex/0508054Google Scholar
  23. 23.
    G. Landsberg, K.T. Matchev, Phys. Rev. D 62, 035004 (2000)CrossRefADSGoogle Scholar
  24. 24.
    D0 Collaboration, A. Melnitchouk et al., Int. J. Mod. Phys. A 20, 3305 (2005)CrossRefADSGoogle Scholar
  25. 25.
    A.G. Akeroyd, M.A. Diaz, Phys. Rev. D 67, 095007 (2003)CrossRefADSGoogle Scholar
  26. 26.
    A.G. Akeroyd, M.A. Diaz, F.J. Pacheco, Phys. Rev. D 70, 075002 (2004)CrossRefADSGoogle Scholar
  27. 27.
    A.G. Akeroyd, Nucl. Phys. B 544, 557 (1999)CrossRefADSGoogle Scholar
  28. 28.
    A.G. Akeroyd, Phys. Lett. B 442, 335 (1998)CrossRefADSGoogle Scholar
  29. 29.
    J.F. Gunion, H.E. Haber, arXiv:hep-ph/0506227Google Scholar
  30. 30.
    J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)CrossRefADSGoogle Scholar
  31. 31.
    F. Cuypers, S. Davidson, Eur. Phys. J. C 2, 503 (1998)CrossRefADSGoogle Scholar
  32. 32.
    Y. Kuno, Y. Okada, Rev. Mod. Phys. 73, 151 (2001)CrossRefADSGoogle Scholar
  33. 33.
    J.F. Gunion, R. Vega, J. Wudka, Phys. Rev. D 42, 1673 (1990)CrossRefADSGoogle Scholar
  34. 34.
    A. Kundu, B. Mukhopadhyaya, Int. J. Mod. Phys. A 11, 5221 (1996)CrossRefADSGoogle Scholar
  35. 35.
    H.E. Haber, H.E. Logan, Phys. Rev. D 62, 015011 (2000)CrossRefADSGoogle Scholar
  36. 36.
    A.G. Akeroyd, Phys. Lett. B 353, 519 (1995)CrossRefADSGoogle Scholar
  37. 37.
    P. Bamert, Z. Kunszt, Phys. Lett. B 306, 335 (1993)CrossRefADSGoogle Scholar
  38. 38.
    J.F. Gunion, R. Vega, J. Wudka, Phys. Rev. D 43, 2322 (1991)CrossRefADSGoogle Scholar
  39. 39.
    A. Alves, T. Plehn, Phys. Rev. D 71, 115014 (2005)CrossRefADSGoogle Scholar
  40. 40.
    F. Maltoni, T. Stelzer, JHEP 0302, 027 (2003)CrossRefADSGoogle Scholar
  41. 41.
    T. Stelzer, W.F. Long, Phys. Commun. 81, 357 (1994)CrossRefADSGoogle Scholar
  42. 42.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002)CrossRefADSGoogle Scholar
  43. 43.
    S. Dawson, S. Dittmaier, M. Spira, Phys. Rev. D 58, 115012 (1998)CrossRefADSGoogle Scholar
  44. 44.
    CDF Collaboration, A. Gajjar, arXiv:hep-ex/0505046Google Scholar
  45. 45.
    D0 Collaboration, V.M. Abazov et al., Phys. Rev. D 71, 091108 (2005)CrossRefADSGoogle Scholar
  46. 46.
    A. Melnitchouk, Ph.D. Thesis, FERMILAB-THESIS-2003-23 (2003)Google Scholar
  47. 47.
    http://www.cdf.fnal.gov/physics/exotic/r2a/20060223.diphotonPlusX/Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Theory Group, KEKTsukubaJapan
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Departamento de FísicaUniversidad Católica de ChileSantiagoChile

Personalised recommendations