Theoretical study on the magnetic properties of the superconductor FeSe

Abstract

Identifying the form of superconducting order parameter is still a controversial problem for the iron-based superconductor FeSe. Based on anisotropic two-component Ginzburg–Landau theory, we study the temperature dependence of upper critical field and London penetration depth for FeSe. Without including the spin paramagnetic effect, all of our theoretical calculations fit the experimental data well in a broad temperature range. Our results thus show that FeSe is a two-gap s-wave superconductor. And the anisotropy of effective masses in the band with larger (or smaller) gap can be estimated as about 10 (or 2) respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The article in its current form has all the information needed to reproduce the presented results. There is no extra information or data that has been omitted.]

References

  1. 1.

    T.M. McQueen, A.J. Williams, P.W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, R.J. Cava, Phys. Rev. Lett. 103, 057002 (2009)

    ADS  Article  Google Scholar 

  2. 2.

    M.D. Watson, T.K. Kim, A.A. Haghighirad, N.R. Davies, A. McCollam, A. Narayanan, S.F. Blake, Y.L. Chen, S. Ghannadzadeh, A.J. Schofield, M. Hoesch, C. Meingast, T. Wolf, A.I. Coldea, Phys. Rev. B 91, 155106 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, M.K. Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008)

    ADS  Article  Google Scholar 

  4. 4.

    S. Medvedev, T.M. McQueen, I.A. Troyan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, C. Felser, Nat. Mater. 8, 630 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. Zhang, W. Li, H. Ding, Y..-B. OU, P. Deng, K. Chang, J. Wen, C..-L. Song, K. He, J..-F. Jia, S..-H. Ji, Y..-Y. Wang, L..-L. Wang, X. Chen, X..-C. Ma, Q..-K. Xue, Chin. Phys. Lett. 29, 037402 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, X.J. Zhou, Nat. Mater. 12, 605 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia, Nat. Mater. 14, 285 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    R. Peng, H.C. Xu, S.Y. Tan, H.Y. Cao, M. Xia, X.P. Shen, Z.C. Huang, C.H.P. Wen, Q. Song, T. Zhang, B.P. Xie, X.G. Gong, D.L. Feng, Nat. Commun. 5, 5044 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    A. Subedi, L. Zhang, D.J. Singh, M.H. Du, Phys. Rev. B 78, 134514 (2008)

    ADS  Article  Google Scholar 

  10. 10.

    J.K. Dong, T.Y. Guan, S.Y. Zhou, X. Qiu, L. Ding, C. Zhang, U. Patel, Z.L. Xiao, S.Y. Li, Phys. Rev. B 80, 024518 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    D. Chareev, E. Osadchii, T. Kuzmicheva, J.-Y. Lin, S. Kuzmichev, O. Volkova, A. Vasiliev, Cryst. Eng. Commun. 15, 1989 (2013)

    Article  Google Scholar 

  12. 12.

    J.-Y. Lin, Y.S. Hsieh, D.A. Chareev, A.N. Vasiliev, Y. Parsons, H.D. Yang, Phys. Rev. B 84, 220507(R) (2011)

    ADS  Article  Google Scholar 

  13. 13.

    R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H. Klauss, H. Luetkens, A. Shengelaya, N.D. Zhigadlo, Phys. Rev. B 78, 220510(R) (2008)

    ADS  Article  Google Scholar 

  14. 14.

    H. Lei, D. Graf, R. Hu, H. Ryu, E.S. Choi, S.W. Tozer, C. Petrovic, Phys. Rev. B 85, 094515 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    H. Doh, M. Sigrist, B.K. Cho, S.-I. Lee, Phys. Rev. Lett. 83, 5350 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    I.N. Askerzade, A. Gencer, N. Güclü, Supercond. Sci. Technol. 15, L13 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    M.E. Zhitomirsky, V.H. Dao, Phys. Rev. B 69, 054508 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    T. Terashima, N. Kikugawa, A. Kiswandhi, E.-S. Choi, J.S. Brooks, S. Kasahara, T. Watashige, H. Ikeda, T. Shibauchi, Y. Matsuda, T. Wolf, A.E. Böhmer, F. Hardy, C. Meingast, H. Löhneysen, M.-T. Suzuki, R. Arita, S. Uji, Phys. Rev. B 90, 144517 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    V.Z. Kresin, J. Low Temp. Phys. 11, 519 (1973)

    ADS  Article  Google Scholar 

  20. 20.

    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  21. 21.

    P.G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1966)

    Google Scholar 

  22. 22.

    M.L. Amigó, V.A. Crivillero, D.G. Franco, G. Nieva, in 27th International Conference on Low Temperature Physics (LT27), Buenos Aires, 6–13 August 2014, edited by Gabriela Pasquini, Yanina Fasano (Journal of Physics, Bristol, 2014), p. 022005

  23. 23.

    V.G. Kogan, S.L. Bud’ko, Phys. C 385, 131 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    M. Abdel-Hafiez, J. Ge, A.N. Vasiliev, D.A. Chareev, J. Van de Vondel, V.V. Moshchalkov, A.V. Silhanek, Phys. Rev. B 88, 174512 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    P.K. Biswas, A. Kreisel, Q. Wang, D.T. Adroja, A.D. Hillier, J. Zhao, R. Khasanov, J.-C. Orain, A. Amato, E. Morenzoni, Phys. Rev. B 98, 180501(R) (2018)

    ADS  Article  Google Scholar 

  26. 26.

    V.L. Pokrovskii, Sov. Phys. JETP 13, 447 (1961)

    Google Scholar 

  27. 27.

    B.T. Geilikman, R.O. Zaitsev, V.Z. Kresin, Sov. Phys. Solid State 9, 642 (1967)

    Google Scholar 

  28. 28.

    V.G. Kogan, J. Schmalian, Phys. Rev. B 83, 054515 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    A.A. Shanenko, M.V. Milošević, F.M. Peeters, A.V. Vagov, Phys. Rev. Lett. 106, 047005 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    A.V. Vagov, A.A. Shanenko, M.V. Milošević, V.M. Axt, F.M. Peeters, Phys. Rev. B 85, 014502 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    A.V. Vagov, A.A. Shanenko, M.V. Milošević, V.M. Axt, F.M. Peeters, Phys. Rev. B 86, 144514 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    N.V. Orlova, A.A. Shanenko, M.V. Milošević, F.M. Peeters, A.V. Vagov, V.M. Axt, Phys. Rev. B 87, 134510 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    See, for example, J.B. Ketterson, S.N. Song, in Superconductivity (Cambridge University Press, Cambridge, 1999)

Download references

Author information

Affiliations

Authors

Contributions

Both authors developed the theoretical formalism, performed the analytic calculations and the numerical simulations. Both of them have read and approved the final manuscript.

Corresponding author

Correspondence to Hai Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, MK., Huang, H. Theoretical study on the magnetic properties of the superconductor FeSe. Eur. Phys. J. B 94, 57 (2021). https://doi.org/10.1140/epjb/s10051-021-00065-3

Download citation