Sensing behaviors of transition metal decorated InN monolayer upon \(\hbox {SO}_{2}\) and NO molecules: a first-principles study

Abstract

As revealed from the results of first-principles calculations, the indium nitride (InN) monolayer is capable of significantly facilitating its interaction with gas molecules after being modified with Transition Metals (TM). Accordingly, the adsorption behavior of Ag-doped InN (Ag–InN) and Pd-doped InN (Pd–InN) monolayers was investigated on two small gas molecules (i.e., \(\hbox {SO}_{2}\) and NO). To make the proposed material more widely applicable, several critical parameters affecting the performance of gas sensors [e.g., adsorption distance, adsorption energy (\(E_\mathrm{ad})\), charge transfer (QT), and density of state (DOS)] were analyzed in depth. As revealed from the results, both gases were capable of adsorbing stably on the surfaces of Ag–InN and Pd–InN monolayers. In addition, the analysis of electron localization function (ELF), DOS and spin band structure demonstrated the robust chemical interactions between Ag or Pd dopants and the activated atoms in the gas molecules. Given the theoretical results of the present study, we can gain insights into the sensing performance exhibited by the TM Ag as well as Pd modified InN surface. The mentioned prominent properties verified the feasibility of this material as a high-sensitivity gas sensor and could be effectively referenced for its application in sensing and catalytic fields.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Ag-InN and Pd-InN before gas sensing, so data are not available.]

References

  1. 1.

    G. Hoek, R.M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, J.D. Kaufman, Environ. Health 12, 43 (2013)

    Article  Google Scholar 

  2. 2.

    C. Chen, K. Xu, X. Ji, L. Miao, J. Jiang, Phys. Chem. Chem. Phys. 16, 11031 (2014)

    Article  Google Scholar 

  3. 3.

    T.W. Hesterberg, W.B. Bunn, R.O. McClellan, A.K. Hamade, C.M. Long, P.A. Valberg, Crit. Rev. Toxicol. 39, 743 (2009)

    Article  Google Scholar 

  4. 4.

    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  5. 5.

    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, Adv. Mater. 24, 2320 (2012)

    Article  Google Scholar 

  6. 6.

    O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77, 125416 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias, S.A. Giamini, C. Grazianetti, D. Chiappe, A. Molle, M. Fanciulli, Appl. Phys. Lett. 103, 251605 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    R. Wei, J. Hu, T. Zhou, X. Zhou, J. Liu, J. Li, Acta Mater. 66, 163 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    C. Xia, Y. Peng, S. Wei, Y. Jia, Acta Mater. 61, 7720 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, Y. Peng, Nanotechnology 20, 185504 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    M. Zhou, Y.-H. Lu, Y.-Q. Cai, C. Zhang, Y.-P. Feng, Nanotechnology 22, 385502 (2011)

    Article  Google Scholar 

  12. 12.

    H. Cui, X. Zhang, G. Zhang, J. Tang, Appl. Surf. Sci. 470, 1035 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    Q. Jiang, J. Zhang, Z. Ao, H. Huang, H. He, Y. Wu, Front. Chem. 6, 187 (2018)

    ADS  Article  Google Scholar 

  14. 14.

    X. Tang, A. Du, L. Kou, Wiley interdisciplinary reviews: computational molecular. Science 8, e1361 (2018)

    Google Scholar 

  15. 15.

    D. Zhang, C. Jiang, Y. Yao, D. Wang, Y. Zhang, Sens. Actuators B Chem. 253, 1120 (2017)

    Article  Google Scholar 

  16. 16.

    X. Zhang, L. Hou, A. Ciesielski, P. Samorì, Adv. Energy Mater. 6, 1600671 (2016)

    Article  Google Scholar 

  17. 17.

    Q. Zhou, W. Zeng, W. Chen, L. Xu, R. Kumar, A. Umar, Sens. Actuators B Chem. 298, 126870 (2019)

    Article  Google Scholar 

  18. 18.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    Y. Cai, Q. Ke, G. Zhang, Y.-W. Zhang, J. Phys. Chem. C 119, 3102 (2015)

    Article  Google Scholar 

  20. 20.

    J.-W. Feng, Y.-J. Liu, H.-X. Wang, J.-X. Zhao, Q.-H. Cai, X.-Z. Wang, Comput. Mater. Sci. 87, 218 (2014)

    Article  Google Scholar 

  21. 21.

    G. Lu, L.E. Ocola, J. Chen, Nanotechnology 20, 445502 (2009)

    Article  Google Scholar 

  22. 22.

    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    M. Idrees, S. Batool, J. Kong, Q. Zhuang, H. Liu, Q. Shao, N. Lu, Y. Feng, E.K. Wujcik, Q. Gao, Electrochim. Acta 296, 925 (2019)

    Article  Google Scholar 

  24. 24.

    P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, J. Leuthold, ACS Photonics 6, 154 (2018)

    Article  Google Scholar 

  25. 25.

    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    A. Abbasi, RSC Adv. 9, 16069 (2019)

    ADS  Article  Google Scholar 

  27. 27.

    A. Abbasi, A. Abdelrasoul, J.J. Sardroodi, Adsorption 25, 1001 (2019)

    Article  Google Scholar 

  28. 28.

    A. Abbasi, J.J. Sardroodi, Appl. Surf. Sci. 442, 368 (2018a)

    ADS  Article  Google Scholar 

  29. 29.

    A. Abbasi, J.J. Sardroodi, Appl. Surf. Sci. 456, 290 (2018b)

    ADS  Article  Google Scholar 

  30. 30.

    H. Liu, Y. Li, M. Xiang, H. Zeng, X. Shao, ACS Nano 13, 6083 (2019)

    Article  Google Scholar 

  31. 31.

    Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei, T. Zhang, M. Zeng, Z. Wang, L. Fu, J. Am. Chem. Soc. 140, 16392 (2018)

    Article  Google Scholar 

  32. 32.

    W. Wang, Y. Zheng, X. Li, Y. Li, H. Zhao, L. Huang, Z. Yang, X. Zhang, G. Li, Adv. Mater. 31, 1803448 (2019)

    Article  Google Scholar 

  33. 33.

    X.-F. Liu, Z.-J. Luo, X. Zhou, J.-M. Wei, Y. Wang, X. Guo, B. Lv, Z. Ding, Chin. Phys. B 28, 086105 (2019)

    ADS  Article  Google Scholar 

  34. 34.

    H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80, 155453 (2009)

    ADS  Article  Google Scholar 

  35. 35.

    M.M. Sarmazdeh, R.T. Mendi, A. Zelati, A. Boochani, F. Nofeli, Int. J. Mod. Phys. B 30, 1650117 (2016)

    ADS  Article  Google Scholar 

  36. 36.

    C. Stampfl, C.G. Van de Walle, D. Vogel, P. Krüger, J. Pollmann, Phys. Rev. B 61, R7846 (2000)

    ADS  Article  Google Scholar 

  37. 37.

    X. Sun, Q. Yang, R. Meng, C. Tan, Q. Liang, J. Jiang, H. Ye, X. Chen, Appl. Surf. Sci. 404, 291 (2017)

    ADS  Article  Google Scholar 

  38. 38.

    C.E.P. Villegas, A.R. Rocha, J. Phys. Chem. C 119, 11886 (2015)

    Article  Google Scholar 

  39. 39.

    K. Okubo, A. Kobayashi, J. Ohta, M. Oshima, H. Fujioka, Appl. Phys. Lett. 102, 022103 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    Y. Chang, F.C. Hong, Mater. Lett. 63, 211855 (2009)

    Google Scholar 

  41. 41.

    V. Kumar, D.R. Roy, J. Mater. Sci. 53, 8302 (2018)

    ADS  Article  Google Scholar 

  42. 42.

    D. Liang, R. Quhe, Y. Chen, L. Wu, Q. Wang, P. Guan, S. Wang, P. Lu, RSC Adv. 7, 42455 (2017)

    ADS  Article  Google Scholar 

  43. 43.

    Q. Peng, X. Sun, H. Wang, Y. Yang, X. Wen, C. Huang, S. Liu, S. De, Appl. Mater. Today 7, 169 (2017)

    Article  Google Scholar 

  44. 44.

    M.S. Prete, D. Grassano, O. Pulci, I. Kupchak, V. Olevano, F. Bechstedt, Sci. Rep. 10, 10719 (2020)

    ADS  Article  Google Scholar 

  45. 45.

    M.S. Prete, O. Pulci, F. Bechstedt, Phys. Rev. B 98, 235431 (2018)

  46. 46.

    H.L. Zhuang, A.K. Singh, R.G. Hennig, Phys. Rev. B 87, 165415 (2013)

    ADS  Article  Google Scholar 

  47. 47.

    H. Feng, J. Ma, Z. Hu, J. Mater. Chem. 20, 1702 (2010)

    Article  Google Scholar 

  48. 48.

    M. Giovanni, H.L. Poh, A. Ambrosi, G. Zhao, Z. Sofer, F. Šaněk, B. Khezri, R.D. Webster, M. Pumera, Nanoscale 4, 5002 (2012)

    ADS  Article  Google Scholar 

  49. 49.

    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    ADS  Article  Google Scholar 

  50. 50.

    M.P.K. Sahoo, J. Wang, Y. Zhang, T. Shimada, T. Kitamura, J. Phys. Chem. C 120, 14113 (2016)

    Article  Google Scholar 

  51. 51.

    T.V. Vu, K.D. Pham, T.N. Pham, D.D. Vo, P.T. Dang, C.V. Nguyen, H.V. Phuc, N.T.T. Binh, D.M. Hoat, N.N. Hieu, RSC Adv. 10, 10731 (2020)

    ADS  Article  Google Scholar 

  52. 52.

    Y. Guo, Y. Zhang, W. Wu, Y. Liu, Z. Zhou, Appl. Surf. Sci. 455, 106 (2018)

    ADS  Article  Google Scholar 

  53. 53.

    H. Cui, D. Chen, C. Yan, Y. Zhang, X. Zhang, Nanoscale Adv. 1, 2003 (2019)

    ADS  Article  Google Scholar 

  54. 54.

    X. Zhang, Y. Wang, Z. Wang, S. Ma, Carbon Lett. 30, 177 (2019)

    Article  Google Scholar 

  55. 55.

    Q. Zhou, G. Zhang, S. Tian, X. Zhang, ACS Omega 5, 17801 (2020)

    Article  Google Scholar 

  56. 56.

    W. Yuan, G. Shi, J. Mater. Chem. A 1, 10078 (2013)

    Article  Google Scholar 

  57. 57.

    Z. Cui, K. Bai, X. Wang, E. Li, J. Zheng, Phys. E Low-dimens. Syst. Nanostruct. 118, 113871 (2020)

    Article  Google Scholar 

  58. 58.

    S.M. Aghaei, M.M. Monshi, I. Torres, S.M.J. Zeidi, I. Calizo, Appl. Surf. Sci. 427, 326 (2018)

    ADS  Article  Google Scholar 

  59. 59.

    G.-X. Chen, H.-F. Li, D.-D. Wang, S.-Q. Li, X.-B. Fan, J.-M. Zhang, Vacuum 165, 35 (2019)

    ADS  Article  Google Scholar 

  60. 60.

    H. El Ghazi, R. En-nadir, H. Abboudi, F. Jabouti, A. Jorio, I. Zorkani, Phys. B Condens. Matter. 582, 411951 (2020)

    Article  Google Scholar 

  61. 61.

    M. Tangi, P. Mishra, T.K. Ng, M.N. Hedhili, B. Janjua, M.S. Alias, D.H. Anjum, C.-C. Tseng, Y. Shi, H.J. Joyce, L.-J. Li, B.S. Ooi, Appl. Phys. Lett. 109, 032104 (2016)

    ADS  Article  Google Scholar 

  62. 62.

    K. Zberecki, J. Supercond. Novel Magn. 25, 2533 (2012)

    Article  Google Scholar 

  63. 63.

    Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett. 461, 276 (2008)

    ADS  Article  Google Scholar 

  64. 64.

    S.B. Touski, M. Ariapour, M. Hosseini, Phys. E Low-dimens. Syst. Nanostruct. 118, 113875 (2020)

    Article  Google Scholar 

  65. 65.

    Y. Zhang, W. Zeng, Y. Li, Ceram. Int. 45, 6043 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China with Grant (No. 61564002); in part by the Science and Technology Foundation of Guizhou Province of China with Grant (No. 20171055).

Author information

Affiliations

Authors

Contributions

GH mainly completed the calculations and wrote the manuscript under the supervision of ZD. XL helped to modify the paper and gave some important suggestions. JS and QY helped to plot some figures in this article.

Corresponding author

Correspondence to Zhao Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Liu, X., Ding, Z. et al. Sensing behaviors of transition metal decorated InN monolayer upon \(\hbox {SO}_{2}\) and NO molecules: a first-principles study. Eur. Phys. J. B 94, 53 (2021). https://doi.org/10.1140/epjb/s10051-021-00060-8

Download citation