Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models

Abstract

We study the quantum self-organization of interacting particles in one-dimensional (1D) many-body systems, modeled via Hubbard chains with short-range interactions between the particles. We show the emergence of 1D states with density-wave and clustering order, related to topology, at odd denominator fillings that appear also in the fractional-quantum-Hall-effect (FQHE), which is a 2D electronic system with Coulomb interactions between the electrons and a perpendicular magnetic field. For our analysis, we use an effective topological measure applied on the real space wavefunction of the system, the Euler characteristic describing the clustering of the interacting particles. The source of the observed effect is the spatial constraints imposed by the interaction between the particles. In overall, we demonstrate a simple mechanism to reproduce many of the effects appearing in the FQHE, without requiring a Coulomb interaction between the particles or the application of an external magnetic field.

Graphic Abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the numerical data from our calculations are displayed/plotted inside the figures.].

References

  1. 1.

    F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    F.D.M. Haldane, Phys. Lett. A 93, 464 (1983a)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

    ADS  Article  Google Scholar 

  4. 4.

    M. Levin, X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    X. Chen, Z.-C. Gu, X.-G. Wen, Phys. Rev. B 82, 155138 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    A.Y. Kitaev, Ann. Phys. 303, 2 (2003)

    ADS  Article  Google Scholar 

  8. 8.

    V. Alba, M. Fagotti, P. Calabrese, J. Stat. Mech. 0910, P10020 (2009)

    Article  Google Scholar 

  9. 9.

    V. Alba, M. Haque, M. Luchli, Phys. Rev. Lett. 110, 260403 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    I. Hen, M. Rigol, Phys. Rev. B 80, 134508 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    A. Hamma, R. Ionicioiu, P. Zanardi, Phys. Rev. A 71, 022315 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    P. Calabrese, A. Lefevre, Phys. Rev. A f78, 032329 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    ADS  Article  Google Scholar 

  17. 17.

    E.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    ADS  Article  Google Scholar 

  18. 18.

    H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71(S298), S305 (1999)

    Google Scholar 

  19. 19.

    H. Li, F.D.M. Haldane, Phys. Rev. Lett. 101, 010504 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    F.D.M. Haldane, Phys. Rev. Lett. 107, 116801 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    I. Kleftogiannis, I. Amanatidis, Eur. Phys. J. B 93, 84 (2020)

    ADS  Article  Google Scholar 

  22. 22.

    I. Kleftogiannis I, I. Amanatidis , V. Popkov, J. Stat. Mech. 063102 (2019)

  23. 23.

    B. Chen, G. Chen, Gauss–Bonnet formula, Finiteness condition, and characterizations for graphs embedded in surfaces. Graphs Combin. 24(3), 159–183 (2008)

  24. 24.

    O. Knill, A discrete Gauss-Bonnet type theorem. Elem. Math. 67, 1–17 (2012)

  25. 25.

    O. Knill, A graph theoretical Gauss–Bonnet–Chern theorem (2011). arXiv:1111.5395

  26. 26.

    I. Kleftogiannis, I. Amanatidis, Eur. Phys. J. B 92, 198 (2019)

    ADS  Article  Google Scholar 

  27. 27.

    I. Kleftogiannis, I. Amanatidis, J. Stat. Mech. 083108 (2020)

  28. 28.

    W. Pan, J.S. Xia, H.L. Stormer, D.C. Tsui, C. Vicente, E.D. Adams, N.S. Sullivan, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. B 77, 075307 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    W.P. Su, J.R. Schrieffer, Phys. Rev. Lett. 46, 738 (1980)

    ADS  Article  Google Scholar 

  30. 30.

    E.J. Bergholtz, A. Karlhede, Phys. Rev. B 77, 155308 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    H. Guo, S.Q. Shen, S. Feng, Phys. Rev. B 86, 085124 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    M.I. Dyakonov, J. Phys. Conf. Ser. 456, 012008 (2013)

    Article  Google Scholar 

  33. 33.

    R. Pankaj, S. Yarlagadda, Phys. Rev. B 86, 035453 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    A. Ghosh, S. Yarlagadda, Phys. Rev. B 90, 045140 (2014)

    ADS  Article  Google Scholar 

  35. 35.

    G. Timp, R. Behringer, J.E. Cunningham, R.E. Howard, Phys. Rev. Lett. 63, 2268 (1989)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge resources and financial support provided by the National Center for Theoretical Sciences of R.O.C. Taiwan and the Department of Physics of Ben-Gurion University of the Negev in Israel. Also we acknowledge support by the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), funded by the EC Research Innovation Action under the H2020 Programme. In particular, we gratefully acknowledge the computer resources and technical support provided by ARIS-GRNET and the hospitality of the Department of Physics at the University of Ioannina in Greece.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kleftogiannis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleftogiannis, I., Amanatidis, I. Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models. Eur. Phys. J. B 94, 41 (2021). https://doi.org/10.1140/epjb/s10051-021-00050-w

Download citation