Stochastic resonance and free oscillation in a sinusoidal potentials driven by a square-wave periodic force

Abstract

Recently, the occurrence of stochastic resonance in a sinusoidal potential driven by a sinusoidal force and a Gaussian white noise was experimentally verified. In this work, we experimentally show that stochastic resonance in sinusoidal potentials can also be observed when driven by a square-wave periodic force. The occurrence of stochastic resonance could be explained as due to the appearance of two dynamical states similar to what was done when driven by a sinusoidal force at large frequencies. However, at smaller frequencies of the square-wave drive, the free but damped oscillations of the output could be observed and the effective exponential damping coefficients measured.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data can be made available from the authors if asked for.]

References

  1. 1.

    S. Fauve, F. Heslot, Phys. Lett. A 97A, 5 (1983)

    ADS  Article  Google Scholar 

  2. 2.

    B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988)

    ADS  Article  Google Scholar 

  3. 3.

    R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A Math. Gen. 14, L453 (1981)

    ADS  Article  Google Scholar 

  4. 4.

    R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    ADS  MATH  Article  Google Scholar 

  5. 5.

    C. Nicolis, Tellus 34, 1 (1982)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    A.R. Bulsara, L. Gammaitoni, Tuning in to noise. Phys Today (1996)

  7. 7.

    M.I. Dykmann et al., Stochastic resonance in perspective. Il Nuovo Cimento 17D, 7–8 (1995)

    Google Scholar 

  8. 8.

    F. Chapeau-Blondeau, Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel. Phys. Rev. E 55, 2 (1997)

    Google Scholar 

  9. 9.

    V. Bedichevsky, M. Gitterman, Stochastic resonance in a bistable piecewise potential: analytical solution. J. Phys. A Math. Gen. 29, L447 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    P. Jung, P. H\(\ddot{a}\)nggi, “Amplification of small signals via stochastic resonance,” Phys. Rev. A, vol. 44, p. 12, (1991)

  11. 11.

    L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Stochastic resonance in bistable system. Phys. Rev. Lett. 62, 4 (1989)

    MATH  Article  Google Scholar 

  12. 12.

    L. Gammaitoni, Stochastic resonance and the dithering effect in threshold physical systems. Phys. Rev. E 52, 5 (1995)

    Article  Google Scholar 

  13. 13.

    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70, 1 (1998)

    Article  Google Scholar 

  14. 14.

    S.M. Bezrukov, I. Vodyanoy, Stochastic resonance in nondynamical systems without response thresholds. Nature 385, 319–321 (1997)

    ADS  Article  Google Scholar 

  15. 15.

    F. Chapeau-Blondeau, X. Godovier, Theory of stochastic resonance in signal transmission by static nonlinear systems. Phys. Rev. E 55, 2 (1997)

    Google Scholar 

  16. 16.

    A. S. Asdi, A. H. Tewfik, Detection of weak signals using adaptive stochastic resonance. In: IEEE International Conference on Acoustic, Speech, Signal Processing, vol. 2 (1995)

  17. 17.

    B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989)

    ADS  Article  Google Scholar 

  18. 18.

    J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Nature (London) 365, 337 (1993)

    ADS  Article  Google Scholar 

  19. 19.

    K. Wiesenfeld, F. Moss, Nature (London) 373, 33 (1995)

    ADS  Article  Google Scholar 

  20. 20.

    H. Chen, P. Varshney, S. Kay, J. Michels, Theory of the stochastic resonance effect in signal detection: Part I-Fixed detectors. IEEE Trans. Signal Process. 55(7), 3172–3184 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    H. Chen, P. Varshney, Theory of the stochastic resonance effect in signal detection-Part ii: variable detectors. IEEE Trans. Signal Process. 56(10), 5031–5041 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    S. Zozor, P.-O. Amblard, Stochastic resonance in locally optimal detectors. IEEE Trans. Signal Process. 51(12), 3177–3181 (2003)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.G. Stocks, Stochastic resonance in electrical circuits-Part I: conventional stochastic resonance. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(9), 1205–1214 (1999)

    Article  Google Scholar 

  24. 24.

    D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.G. Stocks, Stochastic resonance in electrical circuits-Part II: nonconventional stochastic resonance. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(9), 1215–1224 (1999)

    Article  Google Scholar 

  25. 25.

    M. McDonnell, Is electrical noise useful? [Point of view]. Proc. IEEE 99(2), 242–246 (2011)

    Article  Google Scholar 

  26. 26.

    G. Harmer, B. Davis, D. Abbott, A review of stochastic resonance: circuits and measurement. IEEE Trans. Instrum. Meas. 51(2), 299–309 (2002)

    Article  Google Scholar 

  27. 27.

    D.S. Leonard, L. Reichl, Stochastic resonance in a chemical reaction. Phys. Rev. E 49(2), 1734–1737 (1994)

    ADS  Article  Google Scholar 

  28. 28.

    H.S. Wio, Phys. Rev. E 54, R3075 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    H.S. Wio, J.A. Revelli, M.A. Rodriguez, R.R. Deza, G.G. Izús, Eur. Phys. J. B 69, 71–80 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Eur. Phys. J. B 69, 1–3 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223–287 (1998). (For an early review see )

    ADS  Article  Google Scholar 

  32. 32.

    V.I. Melnikov, Schmitt trigger: a solvable model of stochastic resonance. Phys. Rev. E 48, 4 (1993)

    Google Scholar 

  33. 33.

    M.I. Dykman, D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.D. Stein, N.G. Stocks, JETP Lett. 58, 150 (1993)

    ADS  Google Scholar 

  34. 34.

    M.I. Dykman, D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.D. Stein, N.G. Stocks, Phys. Rev. E 49, 1198 (1994)

    ADS  Article  Google Scholar 

  35. 35.

    N.G. Stocks, N.D. Stein, S.M. Soskin, P.V.E. McClintock, J. Phys. A Math. Gen. 25, L1119 (1992)

    ADS  Article  Google Scholar 

  36. 36.

    N.G. Stocks, N.D. Stein, P.V.E. McClintock, J. Phys. A Math. Gen. 26, L385 (1993)

    ADS  Article  Google Scholar 

  37. 37.

    S. Saikia, A.M. Jayannavar, M.C. Mahato, Phys. Rev. E 83, 1 (2011)

    Article  Google Scholar 

  38. 38.

    W.L. Reenbohn, S.S. Pohlong, M.C. Mahato, Phys. Rev. E 85, 1 (2012)

    Article  Google Scholar 

  39. 39.

    W.L. Reenbohn, M.C. Mahato, Phys. Rev. E 88, 1 (2013)

    Article  Google Scholar 

  40. 40.

    W.L. Reenbohn, M.C. Mahato, Phys. Rev. E 91, 1 (2015)

    Article  Google Scholar 

  41. 41.

    D. Kharkongor, W.L. Reenbohn, M.C. Mahato, Phys. Rev. E 94, 1 (2016)

  42. 42.

    T. Iwai, Phys. A 300, 350 (2001)

    Article  Google Scholar 

  43. 43.

    M. Evstigneev, P. Reimann, C. Schmitt, C. Bechinger, J. Phys. Condens. Matter 17, S3795 (2005)

    ADS  Article  Google Scholar 

  44. 44.

    M.C. Mahato, S.R. Shenoy, Phys. Rev. E 50, 2503 (1994)

    ADS  Article  Google Scholar 

  45. 45.

    K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997)

    ADS  Article  Google Scholar 

  46. 46.

    R.-N. Liu, Y.-M. Kang, Phys. Lett. A 382, 1656 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    P.V.E. McClintock, F. Moss, Noise in Nonlinear Dynamical Systems, ed. by F. Moss and P.V.E. McClintock, vol. 3 (Cambridge University Press, Cambridge, 1989), p. 243

    Google Scholar 

  48. 48.

    D.G. Luchinsky, R. Mannella, P.V.E. McClintock, N.G. Stocks, IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46, 1215 (1999)

    Article  Google Scholar 

  49. 49.

    E.A. Desloge, Am. J. Phys. 62, 601 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  50. 50.

    I.S. Sawkmie, M.C. Mahato, Commun. Nonlinear Sci. Numer. Simulat. 78, 104859 (2019)

    Article  Google Scholar 

  51. 51.

    K. Johannessen, An analytical solution to the equation of motion for the damped nonlinear pendulum. Eur. J. Phys. 35, 035014 (2014)

    MATH  Article  Google Scholar 

  52. 52.

    J.A. Blackburn, S. Vik, B. Wu, Driven pendulum for studying chaos. Rev. Sci. Instrum. 50, 3 (1989)

    Google Scholar 

  53. 53.

    J.A. Blackburn, G.L. Baker, A comparison of commercial chaotic pendulums. Am. J. Phys. 66, 9 (1998)

    Article  Google Scholar 

  54. 54.

    P.T. Squire, Pendulum damping. Am. J. Phys. 54, 984 (1986)

    ADS  Article  Google Scholar 

  55. 55.

    I.S. Sawkmie, M.C. Mahato, Phys. Educ. 1(4), 1950015 (2019)

    Article  Google Scholar 

  56. 56.

    Ivan S. Sawkmie, M.C. Mahato, An analog simulation experiment to study free oscillations of a damped simple pendulum, arXiv:1903.06162 [physics.class-ph]

Download references

Author information

Affiliations

Authors

Contributions

All authors have contributed equally to the article.

Corresponding author

Correspondence to Mangal C. Mahato.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sawkmie, I.S., Mahato, M.C. Stochastic resonance and free oscillation in a sinusoidal potentials driven by a square-wave periodic force. Eur. Phys. J. B 94, 44 (2021). https://doi.org/10.1140/epjb/s10051-020-00011-9

Download citation