Skip to main content
Log in

Homogenization method for one-dimensional photonic crystals with magnetic and chiral inclusions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2020

This article has been updated

Abstract

We have theoretically investigated the electromagnetic properties for one-dimensional (1D) photonic crystals with magnetic and artificial chiral inclusions in the quasi-static limit, that is when the size of the unit cell of the crystal is small with respect to the wavelength of the operating wave. We suggest a homogenization theory to determine the effective tensors of the optical response, to achieve this objective, we apply the Bloch’s plane waves method to describe the electromagnetic modes that can propagate in the periodic structure under consideration. Subsequently, the Maxwell’s “microscopic” equations are homogenized replacing the Bloch waves by plane waves that attenuate the fast oscillations of the electromagnetic fields within the unit cell (macroscopic level), i.e., the average-macroscopic electromagnetic fields are determined by the component corresponding to the null reciprocal lattice vector in the expansion in plane waves. The numerical implementation of our theory of homogenization allow us to study the effective bianisotropic electromagnetic response (effective dielectric permittivity, magnetic permeability and electric-magnetic coupling tensors, this last is described by an effective chiral parameter) for 1D photonic crystals whose constituents in its unit cell are a dielectric layer and another magnetic (both isotropic and anisotropic) or chiral inclusion layer. The results are illustrated and discussed by the effective parameters as a function of the filling fraction of the inclusion and show for each case of homogeneous effective medium different components of anisotropy in the electromagnetic response of permittivity, permeability and chirality with the increase of the filling fraction. Besides, the behaviors of the obtained graphs agree well with Rytov’s formulas of effective medium. The relevant results of this theory will be very useful for the study and better understanding of the nature and design of metamaterials with predetermined anisotropic optical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 August 2020

    Reference 42 is corrected to: 42. T.G. Mackay, A. Lakhtakia, SPIE Rev. 1, 018003 (2010)

References

  1. U.C. Hasar, J.J. Barroso, M. Bute, A. Muratoglu, M. Ertugrul, IEEE Trans. Antennas Propag. 64, 8 (2016)

    Google Scholar 

  2. A. Vinogradov, A. Ignatov, A. Merzlikin, S. Tretyakov, C. Simovski, Opt. Express 19, 7 (2011)

    Google Scholar 

  3. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 3 (2005)

    Google Scholar 

  4. D.R. Smith, J. B. Pendry. J. Opt. Soc. Am. B 23, 3 (2006)

    Google Scholar 

  5. J. Jin, S. Liu, Z. Lin, S.T. Chui, Phys. Rev. B 80, 11 (2009)

    Google Scholar 

  6. R. Zhao, T. Koschny, C.M. Soukoulis, Opt. Express 18, 14 (2010)

    Google Scholar 

  7. A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, A. Lavrinenko, Phys. Rev. B 82, 23 (2010)

    Google Scholar 

  8. L. Peng, N.A. Mortensen, New J. Phys. 13, 053012 (2011)

    ADS  Google Scholar 

  9. D. Zarifi, M. Soleimani, A. Abdolali, Phys. Rev. E 88, 2 (2013)

    Google Scholar 

  10. A. Demetriadou, O. Hess, Phys. Rev. B 87, 16 (2013)

    Google Scholar 

  11. A. Alu, Phys. Rev. B 84, 7 (2011)

    Google Scholar 

  12. M.G. Silveirinha, Phys. Rev. E 73, 4 (2006)

    Google Scholar 

  13. Z. Li, M. Mutlu, E. Ozba, J. Opt. 15, 2 (2013)

    Google Scholar 

  14. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Phys. Rev. Lett. 102, 2 (2009)

    Google Scholar 

  15. C.M. Soukoulis, M. Wegener, Nat. Photon 5, 523 (2011)

    ADS  Google Scholar 

  16. J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Photonics Nanostructures: Fundam. Appl. 6, 96 (2008)

    ADS  Google Scholar 

  17. D. Song, Z. Tang, L. Zhao, Z. Sui, S. Wen, D. Fan, J. Euro. Opt. Soc. 8, 13028 (2013)

    Google Scholar 

  18. J. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, F. Pérez-Rodríguez, New J. Phys. 13, 073041 (2011)

    ADS  Google Scholar 

  19. V. Cerdán-Ramírez, B. Zenteno-Mateo, M.P. Sampedro, M.A. Palomino-Ovando, B. Flores-Desirena, F. Pérez-Rodríguez, J. Appl. Phys. 106, 10 (2009)

    Google Scholar 

  20. R. Tao, Z. Chen, P. Sheng. Phys. Rev. B 41, 4 (1990)

    Google Scholar 

  21. L.C. Shen, C. Liu, J. Korringa, K.J. Dunn, J. Appl. Phys. 67, 11 (1990)

    Google Scholar 

  22. D.J. Bergman, K.-J. Dunn, Phys. Rev. B 45, 23 (1992)

    Google Scholar 

  23. S. Datta, C. Chan, K. Ho, C. Soukoulis Phys. Rev. B 48, 20 (1993)

    Google Scholar 

  24. P. Halevi, A. Krokhin, J. Arriaga, Phys. Rev. Lett. 82, 4 (1999)

    Google Scholar 

  25. A.A. Krokhin, E. Reyes, Phys. Rev. Lett. 93, 2 (2004)

    Google Scholar 

  26. G.P. Ortiz, B.E. Martínez-Zerega, B.S. Mendoza, W.L. Mochán, Phys. Rev. B. 79, 24 (2009)

    Google Scholar 

  27. B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M.P. Sampedro, E. Juarez-Ruiz, F. Pérez-Rodríguez, Prog. Electromagn. Res. Lett. 22, 165 (2011)

    Google Scholar 

  28. W.L. Mochán, G.P. Ortiz, B.S. Mendoza, Opt. Express 18, 21 (2010)

    Google Scholar 

  29. E. Cortes, L. Mochán, B.S. Mendoza, G.P. Ortiz, Physica Status Solidi (B) 247, 8 (2010)

    Google Scholar 

  30. J.S. Pérez-Huerta, G.P. Ortiz, B.S. Mendoza, W.L. Mochán, New J. Phys. 15, 043037 (2013)

    ADS  Google Scholar 

  31. R. Haydock, Comput. Phys. Commun. 20, 1 (1980)

    ADS  Google Scholar 

  32. R. Haydock, Phys. Rev. E 48, 3 (1993)

    Google Scholar 

  33. J.B. Pendry, A.J. Holden, D. Robbins, W. Stewart, IEEE Transac. Microw. Theor. Tech. 47, 11 (1999)

    Google Scholar 

  34. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 18 (2000)

    Google Scholar 

  35. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Phys. Rev. B 79, 12 (2009)

    Google Scholar 

  36. J. Dong, J. Zhou, T. Koschny, C. Soukoulis, Opt. Express 17, 16 (2009)

    Google Scholar 

  37. Z. Li, H. Caglayan, E. Colak, J. Zhou, C.M. Soukoulis, E. Ozbay, Opt. Express. 18, 6 (2010)

    Google Scholar 

  38. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Science. 325, 5947 (2009)

    Google Scholar 

  39. A.V. Rogacheva, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Phys. Rev. Lett. 97, 17 (2006)

    Google Scholar 

  40. E. Plum, J. Zhou, J. Dong, V.A. Fedotov, T. Koschny, C.M. Soukoulis, N.I. Zheludev, Phys. Rev. B 79, 3 (2009)

    Google Scholar 

  41. R. Marqués, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 14 (2002)

    Google Scholar 

  42. T.G. Mackay, A. Lakhtakia, J. Photon. Energy 1, 018003 (2010)

    Google Scholar 

  43. M. Wegener, N. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 7 (2009)

    Google Scholar 

  44. O. Ouchetto, C.W. Qiu, S. Zouhdi, L.W. Li, A. Razek, IEEE Transac. Microw. Theor. Tech. 54, 11 (2006)

    Google Scholar 

  45. E. Reyes-Ayona, P. Halevi, inProceedings of NanoScience + Engineering, San Diego-California, 2007, Proc. SPIE 6638, 66380G (2007)

    ADS  Google Scholar 

  46. M.A. Ciattoni, C. Rizza, Phys. Rev. B. 91, 18 (2015)

    Google Scholar 

  47. A.A. Krokhin, J. Arriaga, L.N. Gumen, V.P. Drachev, Phys. Rev. B 93, 7 (2016)

    Google Scholar 

  48. M.A. Gorlach, T.A. Voytova, M. Lapine, Y.S. Kivshar, P.A. Belov, Phys. Rev. B 93, 16 (2016)

    Google Scholar 

  49. A. Chipouline, C. Simovski, S. Tretyakov, Metamaterials 6, 3 (2012)

    Google Scholar 

  50. A.P. Vinogradov, A.M. Merzlikin, Metamaterials 6, 3 (2012)

    Google Scholar 

  51. A. Vinogradov, A. Merzlikin, J. Exp. Theor. Phys. 94, 3 (2002)

    Google Scholar 

  52. A. Konovalenko, F. Pérez-Rodríguez, J. Opt. Soc. Am. B 34, 9 (2017)

    Google Scholar 

  53. S.M. Rytov, Sov. Phys. JETP 2, 3 (1956)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ambrosio.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, J.F., Mateo, B.Z., Moreno, M.M. et al. Homogenization method for one-dimensional photonic crystals with magnetic and chiral inclusions. Eur. Phys. J. B 93, 124 (2020). https://doi.org/10.1140/epjb/e2020-10095-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10095-4

Keywords

Navigation