Investigation on bismuth-based oxide perovskites MBiO3 (M = Rb, Cs, Tl) for structural, electronic, mechanical and thermal properties

Abstract

Herein, we report our density functional theory calculations for structure, electronic, thermodynamic and mechanical properties of MBiO3 (M = Rb, Cs, Tl), compounds of perovskites oxide family. Exchange-correlation potential was treated with generalized gradient and local density approximations. From available ionic data, the tolerance factors and lattice constants were calculated. The values of tolerance factors provided the stability guarantee of MBiO3 compounds in cubic phase while the obtained lattice constants are in accordance to the available data. The cubic phase stability was further confirmed from elastic constants. The electronic structure results disclosed these materials as metallic. Mechanically, all the three perovskites were found as brittle from Cauchy’s pressure, Pugh ratio and Poisson’s ratio. The thermodynamic calculations have been performed using quasi-harmonic Debye model. Thermal properties like Debye temperature, specific heat capacity and thermal expansion have been presented with the variation of temperature and pressure.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. 2.

    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H. J. Snaith, Science 338, 643 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  4. 4.

    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    Jr. M. DiDomenico, S.H. Wemple, Phys. Rev. 166, 565 (1968)

    ADS  Article  Google Scholar 

  6. 6.

    S. Saha, T.P. Sinha, A. Mookerjee, Phys. Rev. B 62, 8828 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    F. Jona, G. Shirane,Ferroelectric Crystals (Macmillan, New York, 1962)

  8. 8.

    B.D. Begg, E.R. Vance, J. Nowotny, J. Am. Ceram. Soc. 77, 3186 (1994)

    Article  Google Scholar 

  9. 9.

    S. Schlag , H-F. Eicke, Solid State Commun. 91, 883 (1994)

    ADS  Article  Google Scholar 

  10. 10.

    B.D. Begg, K.S. Finnie, E.R. Vance, J. Am. Ceram. Soc. 79, 2666 (1996)

    Article  Google Scholar 

  11. 11.

    H. Fang, Y. Wang, S. Shang, Z-K. Liu, Phys. Rev. B. 91, 024104 (2015)

    ADS  Article  Google Scholar 

  12. 12.

    E.A. Antoine, C. Wolverton, Sci. Data 4, 170153 (2017)

    Article  Google Scholar 

  13. 13.

    A.A. Mubarak, S. Al-Omari, J. Magn. Magn. Mater. 382, 211 (2015)

    ADS  Article  Google Scholar 

  14. 14.

    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, Phys. Rev. B. 74, 224412 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    A. Petraru, J. Schubert, M. Schmid, C. Buchal, Appl. Phys. Lett. 81, 1375 (2002)

    ADS  Article  Google Scholar 

  16. 16.

    H. Zhang, J. Wook, K. Wang, G.K. Webber, Ceram. Intern. 40, 4759 (2014)

    Article  Google Scholar 

  17. 17.

    F.A. Yildirim, C. Ucurum, R.R. Schliewe, W. Bauhofer, R.M. Meixner, H. Goebel, W. Krautschneider, Appl. Phys. Lett. 90, 083501 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    M. Tariq, M.A. Ali, A. Laref, G. Murtaza, Solid State Commun. 314–315, 113929 (2020)

    Article  Google Scholar 

  19. 19.

    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 447, 759 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    M.E. Lines, A.M. Glass,Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

  21. 21.

    C. Moure, O. Pena, Prog. Solid State Chem. 43, 123 (2015)

    Article  Google Scholar 

  22. 22.

    G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod et al., Opt. Mater. 33, 553 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    O. Muller, R. Roy,The major ternary structural families (Springer, Berlin, 1974)

  24. 24.

    J.G. Bednorz, K.A. Müller, Rev. Mod. Phys. 60, 585 (1988)

    ADS  Article  Google Scholar 

  25. 25.

    S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    ADS  Article  Google Scholar 

  26. 26.

    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    ADS  Article  Google Scholar 

  27. 27.

    J.C. Boivin, G. Mairesse, Chem. Mater. 10, 2870 (1998)

    Article  Google Scholar 

  28. 28.

    G. Trimarchi, X. Zhang, A.J. Freeman, A. Zunger, Phys. Rev. B 90, 161111 (2014)

    ADS  Article  Google Scholar 

  29. 29.

    H. Jin, S.H. Rhim, J. Im, A.J. Freeman, Sci. Rep. 3, 1651 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, Y. Benmalem, Solid State Commun. 228, 36 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    S.A. Dar, V. Srivastava, U.K. Sakalle, J. Magn. Magn. Mater. 484, 298 (2019)

    ADS  Article  Google Scholar 

  32. 32.

    S.A. Dar, R. Sharma, V. Srivastava, U.K. Sakalle, RSC Adv. 9, 9522 (2019)

    Article  Google Scholar 

  33. 33.

    S.A. Dar, V. Srivastava, U.K. Sakalle, Comput. Condens. Matter 18, e00351 (2019)

    Article  Google Scholar 

  34. 34.

    L. Ju, S.A. Dar, J. Electron. Mater. 48, 4886 (2019)

    ADS  Article  Google Scholar 

  35. 35.

    S.A. Dar, R. Sharma, A.Kr. Mishra, J. Mol. Graph. Model. 90, 120 (2019)

    Article  Google Scholar 

  36. 36.

    S. Zhao, Z. Wei, S.A. Dar, Z. Naturforsch. 74, 827 (2019)

    ADS  Article  Google Scholar 

  37. 37.

    P.V. Balachandran, A.A. Emery, J.E. Gubernatis, T. Lookman, C. Wolverton, A. Zunger, Phys. Rev. Mater. 2, 043802 (2018)

    Article  Google Scholar 

  38. 38.

    K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)

    ADS  Article  Google Scholar 

  39. 39.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicke, J. Luitz,Introduction to WIEN2K, An Augmented plane wane plus local orbitals program for calculating crystal properties (Vienna university of technology, Vienna, Austria, 2001)

  40. 40.

    S.A. Dar, V. Srivastava, U.K. Sakalle, J. Elec. Mater. 46, 6870 (2017)

    ADS  Article  Google Scholar 

  41. 41.

    A. Otero-de-la-Roza, V. Luaña, Phys. Rev. B 84, 184103 (2011)

    ADS  Article  Google Scholar 

  42. 42.

    M.A. Blanco, A.M. Pendas, E.J. Francisco, J. Mol. Struct. Theor. Chem. 268, 245 (1996)

    Article  Google Scholar 

  43. 43.

    Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)

    ADS  Article  Google Scholar 

  44. 44.

    L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)

    ADS  Article  Google Scholar 

  45. 45.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  46. 46.

    P.E. Blochl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    ADS  Article  Google Scholar 

  47. 47.

    T. Charpin,A Package for Calculating elastic tensors of cubic phases using WIEN (Laboratory of Geometrix, Paris, France, 2001)

  48. 48.

    F. Birch, Phys. Rev. 71, 809 (1947)

    ADS  Article  Google Scholar 

  49. 49.

    R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007)

    Article  Google Scholar 

  50. 50.

    S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, J. Elec. Mater. 47, 3809 (2018)

    ADS  Article  Google Scholar 

  51. 51.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    ADS  Article  Google Scholar 

  52. 52.

    J.B. Goodenogh, Rep. Prog. Phys. 67, 1915 (2004)

    ADS  Article  Google Scholar 

  53. 53.

    L.E. Russel, D.L. Harrison, N.H. Brett, J. Nucl. Mater. 2, 310 (1960)

    ADS  Article  Google Scholar 

  54. 54.

    N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, F. Li, Int. J. Hydrogen Energy 35, 7295 (2010)

    Article  Google Scholar 

  55. 55.

    M. Born, Proc. Cam. Philos. Soc. 36, 160e172 (1940)

    Google Scholar 

  56. 56.

    M. Born, K. Huang,Dynamical Theory of crystal Lattices (Oxford University Press, London, 1956)

  57. 57.

    R. Hill, Proc. Phys. Soc. London 65, 349 (1952)

    ADS  Article  Google Scholar 

  58. 58.

    A. Reuss, Z. Angew, Mater. Phys. 9, 49 (1929)

    Google Scholar 

  59. 59.

    S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  60. 60.

    S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, Eur. Phys. J. Plus 131, 64 (2018)

    Article  Google Scholar 

  61. 61.

    I.N. Frantsevich, F.F. Voronov, S.A. Bokuta,Elastic constants and Elastic Moduli of metals and Insulators Handbook, edited by I.N. Frantsevich (Naukova Dumka, Kiev, 1982) p. 60

  62. 62.

    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  63. 63.

    J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Sci. 31, 1 (2001)

    ADS  Article  Google Scholar 

  64. 64.

    T. Vergaard, J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988)

    Article  Google Scholar 

  65. 65.

    Z. Wan, Y. Yu, H.F. Zhang, T. Gao, X.J. Chen, C.J. Xiao, Eur. Phys. J. B 85, 181 (2012)

    ADS  Article  Google Scholar 

  66. 66.

    A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Malak Azmat Ali.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dar, S.A., Ali, M.A. & Srivastava, V. Investigation on bismuth-based oxide perovskites MBiO3 (M = Rb, Cs, Tl) for structural, electronic, mechanical and thermal properties. Eur. Phys. J. B 93, 102 (2020). https://doi.org/10.1140/epjb/e2020-10073-x

Download citation

Keywords

  • Computational Methods