Spectrum and normalized modes of acoustic phonons in multilayer nitride-based nanostructure

Abstract

Using the model of an elastic continuum, precise analytical solutions of the equations of motion are established and a theory of the spectrum and components of the displacement field of acoustic phonons is developed for a two-well resonant-tunneling nanostructure with AlN – quantum barriers and GaN∕AlxGa1−xN – quantum wells. For the experimentally realised nanostructure – the active zone of a quantum cascade detector – depending on its geometric parameters, the spectrum of acoustic phonons and normalized components of the displacement fields were calculated.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 100, 181103 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 101, 251101 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    A. Pesach, E. Gross, C.-Y. Huang, Y.-D. Lin, A. Vardi, S.E. Schacham, S. Nakamura, G. Bahir, Appl. Phys. Lett. 102, 022110 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    T. Kotani, M. Arita, K. Hoshino, Y. Arakawa, Appl. Phys. Lett. 108, 052102 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    G.S. Huang, T.C. Lu, H.H. Yao, H.C. Kuo, S.C. Wang, G. Sun, C. Lin, L. Chang, R.A. Soref, J. Cryst. Growth 298, 687 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    B. Mirzaei, A. Rostami, H. Baghban, Opt. Laser Technol. 44, 378 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    K. Wang, T.-T. Lin, L. Wang, W. Terashima, H. Hirayama, Jpn. J. Appl. Phys. 57, 081001 (2018)

    ADS  Article  Google Scholar 

  8. 8.

    V.X. Ho, T M. Altahtamouni, H.X. Jiang, J.Y. Lin, J.M. Zavada, N.Q. Vinh, ACS Photonics 5, 1303 (2018)

    Article  Google Scholar 

  9. 9.

    J.M. Li, Y.W. Lu, J. Vac. Sci. Technol. B 22, 2568 (2004)

    Article  Google Scholar 

  10. 10.

    S. Saha, J. Kumar, J. Comput. Electron. 15, 1531 (2016)

    Article  Google Scholar 

  11. 11.

    I.V. Boyko, Condens. Matt. Phys. 21, 43701 (2018)

    Article  Google Scholar 

  12. 12.

    S. Leconte, L. Gerrer, E. Monroy, Microelectron. J. 40, 339 (2009)

    Article  Google Scholar 

  13. 13.

    Y. Baines, J. Buckley, J. Biscarrat, G. Garnier, M. Charles, W. Vandendaele, C. Gillot, M. Plissonnier, Sci. Rep. 7, 8177 (2017)

    ADS  Article  Google Scholar 

  14. 14.

    L. Zhang, Superlattices Microstruct. 40, 144 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    L. Zhang, J.-J. Shi, Commun. Theor. Phys. 47, 349 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    W.-D. Huang, G.-D. Chen, H.-G. Ye, Y.-J. Ren, Physica B 410, 33 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    L. Zhang, Superlattices Microstruct. 53, 113 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    E.P. Pokatilov, D.L. Nika, A.A. Balandin, Superlattices Microstruct. 33, 155 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    E.P. Pokatilov, D.L. Nika, J. Appl. Phys. 95, 5626 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    E.P. Pokatilov, D.L. Nika, A.A. Balandin, Appl. Phys. Lett. 85, 825 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    E.P. Pokatilov, D.L. Nika, A.S. Askerov, A.A. Balandin, J. Appl. Phys. 102, 054304 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    S.M. Rytov, Akust. Zh. 71, 71 (1956)

    Google Scholar 

  23. 23.

    Y.H. Zan, S.L. Ban, Y.J. Chai, Y. Qu, Superlattices Microstruct. 102, 64 (2017)

    ADS  Article  Google Scholar 

  24. 24.

    J. Wang, L. Zhu, W. Yin, Comput. Mater. Sci. 145, 14 (2018)

    Article  Google Scholar 

  25. 25.

    L. Zhu, H. Luo, J. Alloys Compd. 685, 619 (2016)

    Article  Google Scholar 

  26. 26.

    L. Zhu, H. Luo, J. Theor. Appl. Mech. 6, 277 (2016)

    Google Scholar 

  27. 27.

    F.J. Yang, S.L. Ban, Solid State Commun. 161, 5 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    M.A. Stroscio, M. Dutta,Phonons in Nanostructures (Cambridge University Press, Cambridge, 2001)

  29. 29.

    L. Xu, C.A. Curwen, D. Chen, J.L. Reno, T. Itoh, B.S. Williams, IEEE J. Sel. Top. Quantum Electr. 23, 1 (2017)

    Google Scholar 

  30. 30.

    S.P. Lepkowski, Phys. Rev. B. 75, 195303 (2007)

    ADS  Article  Google Scholar 

  31. 31.

    M.-M. Soumelidou, I. Belabbas, J. Kioseoglou, Ph. Komninou, J. Chen, Th. Karakostas, Comput. Condens. Matter 10, 25 (2017)

    Article  Google Scholar 

  32. 32.

    L. Wendler, V.G. Grigoryan, Surf. Sci. 206, 203 (1988)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor Boyko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyko, I., Petryk, M. & Fraissard, J. Spectrum and normalized modes of acoustic phonons in multilayer nitride-based nanostructure. Eur. Phys. J. B 93, 57 (2020). https://doi.org/10.1140/epjb/e2020-100597-x

Download citation

Keywords

  • Solid State and Materials